Intermodal Logistics Park North Ltd

INTERMODAL LOGISTICS PARK NORTH (ILPN)

Intermodal Logistics Park North (ILPN) Strategic Rail Freight Interchange (SRFI)

Project reference TR510001

RAIL REPORT

OCTOBER 2025

Planning Act 2008

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017

Contents

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. THE RAIL TERMINAL
- 4. TIMETABLE MODELLING AND SIGNALLING
- 5. DEVELOPMENT, OPERATION & PHASING
- 6. EXISTING RAILWAY CROSSINGS
- 7. RAILPORT OPERATION
- 8. CONCLUSION

Appendix 1: Parkside Logistics and Rail Freight Interchange Study

Appendix 2 : Parkside Strategic Rail Freight Interchange Background Paper

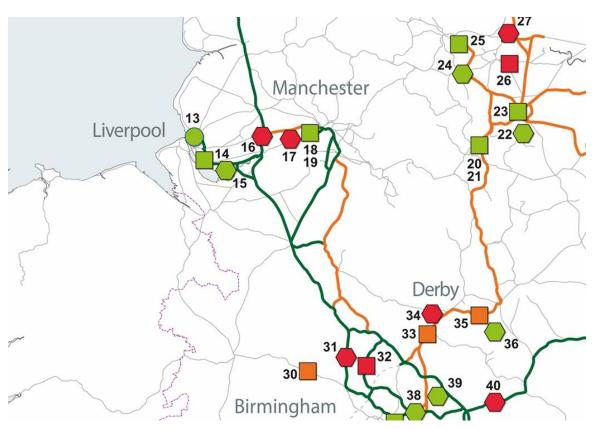
Chapter 1 ◆ EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

- 1.1 Intermodal Logistics Park North (ILPN) is situated on the Chat Moss line, which links the cities of Manchester and Liverpool. The Chat Moss line has connections to the West Coast Main Line (WCML) in both north and south directions, within 5km of the proposed ILPN site. The WCML is a key part of Network Rail's Strategic Freight Network and forms the spine of freight services up and down the country.
- 1.2 Routes further to the east are accessible via the existing rail network through Manchester and the TransPennine line. To the west access to Liverpool and port facilities are also within easy reach. The proposed ILPN is therefore ideally situated for the efficient movement of freight to and from the main NW urban areas to/from the remainder of the country's strategic freight facilities and ports.
- 1.3 This report outlines the physical and operational aspects of the rail terminal, its feasibility and functions, in support of the submission for the Development Consent Order for the overall Intermodal Logistics Park North (ILPN).
- 1.4 The report provides a description of the onsite layout of the rail terminal and its intermodal railport and rail connectable buildings, its key features and the rail operations that will take place on the site. The report explains the available freight capacity along the WCML/Chat Moss corridor and examines availability for additional paths for the rail terminal, validated by Network Rail.
- 1.5 The options for connections to the mainline and associated signalling proposals, as well as proposals for existing level crossings have been through joint workshop exercises with Network Rail as part of ongoing joint work in accordance with its PACE framework (Project Acceleration in a Controlled Environment), on the same basis Network Rail does for every SRFI proposal.
- 1.6 The scheme has been designed to handle 16 trains per day (32 movements) on and off the adjoining Chat Moss Line, which forms part of Network Rail's Strategic Freight Network. This connects ILPN to the Port of Liverpool to the west and the TransPennine line via Manchester to the east. The Newton-le Willows Junction to the east of the ILPN connections provides for access onto the West Coast Main Line (WCML) north, to and from Scotland. The line from Earlestown to Winwick Junction provides the connection to the WCML south, to the Midlands and the Southern ports including London Gateway, Felixstowe, Southampton and Tilbury.
- 1.7 The western most connections have been moved further east than the original Parkside Colliery connection, enabling faster connections and minimising disruption to other services. The scheme allows for the development of rail connected buildings.

Chapter 2 ◆ INTRODUCTION

INTRODUCTION


Strategic Rail Freight Interchanges (SRFI)

- 2.1 Strategic Rail Freight Interchanges (SRFI) are distribution centres that seek to optimise the use of rail freight journeys by connecting to both the strategic rail and road networks. The Government supports the creation of a series of SRFIs across the UK, to reduce lorry movements from the roads and transfer them onto the rail network, reducing both road traffic congestion and carbon emissions.
- 2.2 ILPN complies with the criteria for SRFIs as set out in the National Policy Statement for National Networks 2024 (NPS). This includes:
 - NPS 4.83 The scheme will be developed in a form that can accommodate both rail and non-rail activities.
 - NPS 4.81 The scheme will have good access to the markets it will serve, both by rail and by road. It should be noted that the NPS accepts at paragraph 4.81 that due to these, countryside locations maybe required for SRFIs.
 - NPS 4.85 Adequate links to the road and rail network are essential, including both rail capacity and gauge. ILPN adjoins Network Rail's Strategic Freight Network. The capacity has been checked by NR and it has capacity for the 16 intermodal trains per day (32 movements); and is gauged clear to W12. ILPN has close proximity to the M6 Motorway at Junction 22 and existing road access schemes to the site have already been completed.
 - NPS 4.86 Appropriate mitigations measures are planned for the scheme overall.
 - NPS 4.87 Employment both within the rail terminal and the supporting rail industry will
 offer a wide range of specialist opportunities both locally and at the origin and
 destination sites of the rail freight flows.
 - NPS 4.86 4.88 The scheme has been designed to provide an intermodal terminal from the outset, using reach stackers and gantry cranes to lift containers and swapbodies between trucks and trains and into stacks for storage. The intermodal terminal is designed to be built in phases, capable of handling up to 16 intermodal trains per day. All of the buildings on the development will be capable of being Rail Served by HGV or Tugmasters taking containers to and from individual yards and their loading bays. The scheme has also been designed to enable buildings in zones either side of the Railport to be Rail Connected, either directly into or alongside them, subject to market demand; in accordance with NPS 4.86 4.88.

2.3 Figure 2.1 illustrates the location of ILPN (number 16) as part of the Strategic Freight Network and other sites for connecting freight traffic.

- 2.4 ILPN has been identified as an ideal SRFI location for a significant period of time, summarized by the '2020 Parkside Strategic Rail Freight Interchange Background Paper' produced by St Helens Borough Council. This document forms an integral part of the St Helens Borough Local Plan 2020-2035. This references the Parkside Logistics Freight Interchange Study undertaken by AECOM in 2016. The paper identifies strong regional support for the site over the last 20 years, and was considered a fundamental component of the North West Regional Spatial Strategy (2008) Policy RT8.
- 2.5 Inclusion in Liverpool City Region Transport Growth Plan (2014) and Liverpool City Region Freight and Logistics Strategy (2017) is also evident, in the Scott Wilson (now Aecom) background paper in 2010 which informed the St Helens Local Plan Core Strategy in 2012.
- 2.6 Support for ILPN has prevailed from Regional and Local levels and continues to form an integral constituent of strategic freight and economic development policies.

The Chat Moss Line

2.7 The Chat Moss Line is a mixed traffic railway for both passenger and freight, predominantly used for passenger traffic between Liverpool and Manchester. The line is gauge cleared throughout to support the free movement of deep-sea containers. The line is electrified and

- therefore available for diesel, electric, or bi modal traffic.
- 2.8 Passenger Rail Services on the Chat Moss Railway Line are served by Northern, TransPennine Express and Transport for Wales trains. Various services stop at Newton-Le-Willows station with a daytime frequency of approximately 6 trains per hour in each direction. Freight services consist of approximately 1 train per hour.
- 2.9 The detailed timetabling exercise, carried out by a freight train operating company working with ILPN and verified by Network Rail, has determined that there is capacity in the timetable to accommodate up to 16 intermodal freight trains per day (32 moves each way), to serve the Rail Terminal taking into account the handling capacity of the ILPN Railport.

Chapter 3 ◆ THE RAIL TERMINAL

THE SRFI RAIL TERMINAL

- 3.1 The Intermodal Logistics Park North (ILPN) is a Strategic Rail Freight Interchange (SRFI) comprising a rail terminal, which includes all the rail elements of ILPN that are proposed to be constructed with access to/from the Chat Moss line on a site approximately 0.75km to the east of Newton-le-Willows Station.
- 3.2 ILPN will accommodate logistics buildings with links to the M6 Junction 22 and rail freight links to connect across the United Kingdom, primarily utilising the West Coast Mainline (WCML) and the TransPennine line.
- 3.3 New rail infrastructure is required, including points off the existing Chat Moss Line to provide access to reception sidings thereby facilitating efficient exit/entry from the mainline in either direction, and a series of reception sidings beyond, connecting to the intermodal rail terminal, known as the Railport, in which trains will be unloaded, and loaded, with containers transferred to and from trucks with trailers' and to and from storage positions in container stacks.
- 3.4 Connections can also be made to connect logistics buildings either side of the Railport with private sidings, if required.
- 3.5 The overall rail terminal and its 'Railport' can accommodate and service up to 16 trains per day, each up to 775m in length, the maximum length that can be accommodated on Network Rail's Strategic Freight Network. Within the Railport hard-surfaced areas will be used for container storage, moved by reach stackers, with reach stackers and gantry cranes used for the loading and unloading of containers between trains and trucks.
- 3.6 Up to 767,000 m² (gross internal area or GIA) of logistics accommodation and ancillary buildings with a total footprint of up to 590,000 m² at ground level and up to 177,050 m² of mezzanine floorspace, of which 290,000 m² can be rail connected, with rail run alongside platforms or into buildings.
- 3.7 A head shunt and additional sidings have been designed to be accommodated on Parkside West, an adjoining industrial and logistics development scheme, to allow for the receipt, departure and potential short term stabling of trains to and from the east (TransPennine) and north (Scotland). This also provides additional capacity for serving rail connected buildings.

Proposed Rail Infrastructure

3.8 The ILPN would be located adjacent to Network Rail's Chat Moss route, at a very similar location to the previous rail linked Parkside Colliery. Connections to the West Coast Mainline (WCML) are within 5km of the site in either north or south directions. Refer to Figure 3.1.

3.9 Locally this route passes between Liverpool and Manchester and takes the form of two parallel railway tracks. The line is currently electrified and is used primarily for electrified passenger traffic. The closest passenger stations to the Main ILPN Site are Newton-le-Willows 0.75 km to the west and Patricroft in the direction of Manchester, 16 km to the east. The line is known in engineering terms as the Deal Street to Edgehill (DSE) Chat Moss Route

Legend
Chatt Mose Line
Chatt Mose Line
Chatter Shall Cayout

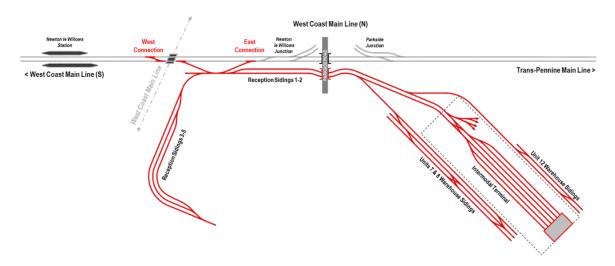

Reviors Fair
County Fair
Coun

Figure 3.1 ILPN site and proximity of Chat Moss Line and West Coast Mainline railways

- 3.10 Provision is made for two connections to the main line, allowing access for trains arriving and leaving from either direction with crossovers on the main line itself to allow freight trains to move from one track to another. As such, a train from the west/south would cross to the westbound line before entering the ILPN Railport and a train from the east would be able to enter the ILPN Railport directly from the westbound line. Trains departing the Railport follow the reverse operation with trains departing westbound directly, and those heading eastbound utilising the eastern crossover. Figure 3.2 illustrates the schematic track layout of the connections, reception sidings, and Railport.
- 3.11 Connections into the ILPN from the main line have been designed so that trains can enter the terminal at a safe and appropriate speed, minimising the time that an arriving train takes to vacate the main line. The design speed of the turnouts has been agreed with Network Rail. This is to avoid causing delays to other rail services. 'Intermodal' trains carrying containers would enter the site from either direction and would run directly to electrified reception sidings which have been configured for use from each direction. From these reception sidings,

if the mainline engine is not used, trains will be hauled by a shunter into the Railport sidings. then served by reach stackers and or gantry cranes, for unloading and loading.

Figure 3.2 ILPN schematic track layout illustrating connections to the Chat Moss Line, Reception Sidings 1-5, Railport, and potential spurs to rail-connected buildings

- 3.12 Other trains, which might comprise traditional freight wagons or coaches carrying express freight in roll cages can be directed to the reception sidings before being moved to a final position adjacent or within a building for unloading. Additional sidings would provide links to the rail-connected buildings served by dedicated sidings. These would further assist train stabling and marshalling generally.
- 3.13 The reception sidings are configured to permit runaround movements for locomotives. These are required to facilitate the transfer of electric locomotives away from the arriving train and to allow shunting movements of the train into the Railport itself. Similarly, the configuration allows the departing train to be shunted into the reception sidings, if necessary, before attaching the allocated locomotive to haul the train from the SRFI on its outward journey. Trains to and from the west and south can be taken straight into and out of the Railport. A traverser, which is a mechanical device to move trains horizontally between different tracks, would allow the release of engines and movement onto a runaround line (See Fig 3.2).
- 3.14 The proposed rail infrastructure and the Railport, described below, would have the capacity to handle up to 16 trains per day, equating to 16 inbound movements and 16 outbound movements or 32 train movements in total. Trains would be up to 775 metres in length, reflecting Network Rail's strategy to increase maximum train lengths from the established length of 600 metres to provide more capacity and reduce costs per container and is consistent with the NNNPS (paragraph 4.89).
- 3.15 Two transfer lanes facilitate the circulation of HGVs through the Railport located between the intermodal sidings and the two lanes working north west to south east to facilitate loading, overtaking and return circulation respectively. Transfers can be directly onto road haulage for immediate departure, or for temporary storage in the Railport until road haulage arrives for onward transfer. Laden and empty returns will either go to a stack or direct to a train to be loaded.

Figure 3.3 ILPN schematic track layout illustrating connections to the Chat Moss Line, Reception Sidings 1-5, Railport, and potential spurs to rail-connected buildings

7275 - 117

3.16 The Railport is made up of 6 No sidings, each capable of accommodating a 775m long train, although one would be used as a runaround line. Electric, rail mounted, gantry cranes will be used to transfer containers from the trains to trucks in the two lanes either side of the sidings.

Chapter 4◆ TIMETABLE MODELLING & SIGNALLING

TIMETABLE MODELLING AND SIGNALLING

Objective of Timetabling/Pathing Study

- 4.1 To understand the potential operational viability for the proposed rail terminal at Intermodal Logistics Park North (ILPN) a pathing study has been undertaken, looking at the potential availability of additional paths between Newton-le- Willows and Crewe Basford Hall to serve ILPN to/from the WCML connection to the south of the site.
- 4.2 This route was selected as this represents the highest volume route for intermodal and other freight traffic given the origins of traffic from deep-sea ports and freight terminals to the south. The assessment did not include for paths from either the east or the north, as these present fewer origins for freight traffic.
- 4.3 This timetable study takes the assumed December 2024 timetable (as agreed with Network Rail) for passenger and freight on the route as a starting position. Weekday daytime paths only were considered, as this is a worst case. In practice there is far greater capacity on the network for freight to run at night.
- 4.4 The objective of the timetable study is to confirm there is sufficient capacity available to support the proposed maximum capacity of 16 freight trains per day. For the purposes of this study the window between 0600 and 00:01 has been conservatively taken to ensure no impact by overnight possessions. This is based upon existing levels of operational infrastructure and existing rail traffic.
- 4.5 Once the quantum of additional paths had been found, together with any other findings from the timetable study, this was analysed against rail traffic aspirations to help evaluate the operational feasibility of the Railport.

Timetable Assumptions

- 4.6 Required paths have been timed based upon a 775m container train hauled by a class 66 loco, 1800T at a maximum speed of 75 mph, which is a realistic typical worst case.
- 4.7 It is assumed that the line speed into the ILPN rail terminal is 30 mph on all tracks from the west and Sectional Running Times (SRTs) have been modelled using Railsys as agreed with Network Rail.
- 4.8 Timetable Planning Rules (TPRs) have been assumed at this stage whereby conflicting movements are avoided for the purposes of the study.
- 4.9 As agreed with Network Rail where necessary, other passenger / freight services can be flexed to accommodate additional paths, using part D of the Network Code and Decision Criteria as a guide. It is expected that when coming into operation, a key piece of infrastructure such as

ILPN would be supported through the normal industry review of pathing at that time.

Study Findings

- 4.10 The route from the West Coast Mainline at, from Crewe Basford Hall, to Newton-le Willows and into the ILPN Railport on the Chat Moss Line has sufficient spare capacity to be able to accommodate 13 trains each way during the day.
- 4.11 The study suggests there are up to 14 incoming paths and 13 departing paths a day (06:00 to 00:01) in this direction. Additional paths from either the east or northerly directions are less constrained and would provide a minimum of 3 incoming and 3 departing paths.
- 4.12 The operational study concluded, and it has been agreed with Network Rail, that with the assumed design set out in Fig 3.1 above, sufficient paths could be found on and off the Railport onto the Chat Moss Line to support up to 16 freight trains per day as far as the known dispersal points.

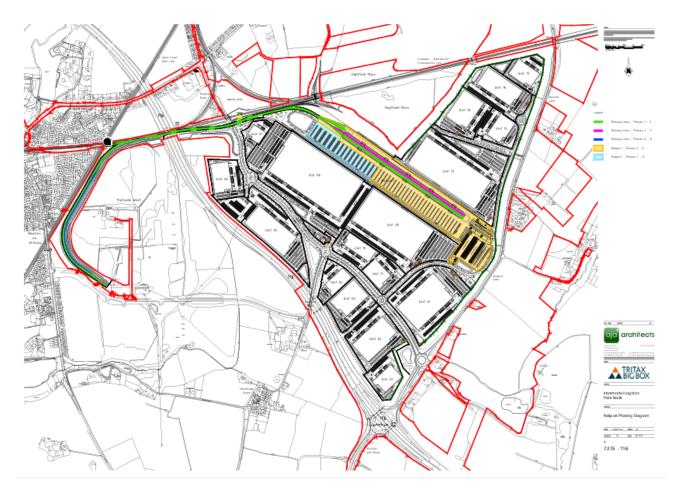
Signalling Requirements and Operational Interface

- 4.13 Signalling and the Operational Interfaces have been considered in detail with Network Rail. The Engineers Line Reference at this location is DSE and control of the signalling is via the Warrington Power Signal Box (PSB). The signalling system in this area is predominately 4 aspect.
- 4.14 The positioning of the ILP North rail connection has benefitted from the adjoining site previously being Parkside colliery, which had rail connections to the Chat Moss Line to facilitate coal distribution. During the decommissioning of the colliery rail connections much of the signal interlocking was left in place, rather than being removed from site. By employing this interlocking in the ILPN design the extent of signalling works is minimized and therefore becomes more straightforward to design and implement. An existing signal on the Up Line can be utilised for the junction signal to permit crossing of the Chat Moss into ILPN from the west, further improving the efficiency of this location. Alterations to the Warrington PSB control panel will also be minimised.
- 4.15 The original Parkside Colliery connections required trains from the west to cross over to the Liverpool bound line and run 'the wrong way' through the station, into Parkside West. This was the method anticipated in earlier outline schemes considered in support of the St Helens Local Plan review.¹
- 4.16 Newton le Willows station has since been extended and the colliery track bed over the WCML has been removed and the area repurposed by Network rail for power infrastructure. As a result the ILPN cross over will be further east, after Newton le Willows station and then connecting into ILPN after the WCML bridge.
- 4.17 The rail connection to the east has to be placed just to the west of Parkside Junction, which connects to the WCML at Golborne Junction, to enable access for trains to and from Scotland,

¹ AECOM and Cushman and Wakefield 2016

as well as the East Coast ports via the TransPennine line.

- 4.18 The combination fits only within a relatively tight area between the WCML bridge and Parkside Junction, which creates the nodal points from which the rest of the rail terminal's infrastructure has had to be designed. This in turn has to accommodate reception sidings and the Railport each with 775m length sections of track, as well as gradients to and from the WCML to the development plateau being created for ILPN, with track under the M6 motorway.
- 4.19 The Mainline signaller will set a route to permit the incoming train to enter one of the reception sidings. The junction design from the west is such that 30mph entry speed is possible, thereby minimizing the crossing time on the Chat Moss when approaching from the west/south. This significantly reduces the likelihood of ILPN trains needing to be held on the Chat Moss line prior to entry.
- 4.20 For trains from the east including Scotland, the entry speed possible will be 20mph.
- 4.21 Should ILPN trains need to be held at signals on the Chat Moss Line, a Level Crossing review has checked for blocking of pedestrian level crossings to the east, or the creation of restricted vision splays towards oncoming trains on the Up (Manchester bound) line.
- 4.22 However, in considering the movement of pedestrians and cyclists and other users of the immediate level crossing, it is proposed that Lowton level crossing (east end of the Highfield Moss) is closed and the footpath diverted, with the Parkside Level Crossing replaced by a footbridge.
- 4.23 The resulting signalling and operational interface arrangements have been considered by Network Rail's Signalling Review Panel following the workshops between the Applicant's and Network Rail's signalling engineers.



Chapter 5 ◆ DEVELOPMENT, OPERATION & PHASING

DEVELOPMENT, OPERATION & PHASING

- 5.1 The experience of the existing SRFIs indicate that it may take several years for each site to achieve a mature level of rail freight traffic. The capacity of the interchange facilities on site will grow in line with the traffic demand.
- 5.2 The rail terminal and its Railport are designed to be scaled up in phases, from a minimum starting base capable of handling 4 trains per day rising to 16 trains per day. The point at which the phasing commences, and later phases are developed, will depend on the terminal operator and market demand.

Figure 5.1 Phasing Plan

Initial Operation

5.3 The initial build will allow at least four 775m intermodal trains a day to be serviced which are initially likely to be a combination of electric and diesel hauled.

- 5.4 To achieve this a secure site and level platform with space for the completed Railport would be created, with connections to the Chat Moss mainline, with reception sidings as described above. The Railport would be fenced for security and would incorporate ancillary office, maintenance, mess room accommodation and car parking for Railport staff. It would be lit to enable 24-hour operation, using lighting designed to minimise light pollution.
- 5.5 The early phases of the Railport's intermodal freight yard will be operated by reach stackers for rail on/offloading to and from trucks, and for the temporary storage of full or empty containers in container stacks. These stacks will be up to 5 high laden and 7 high empty.

Figure 5.2 A reach stacker in operation

Railport Expansion

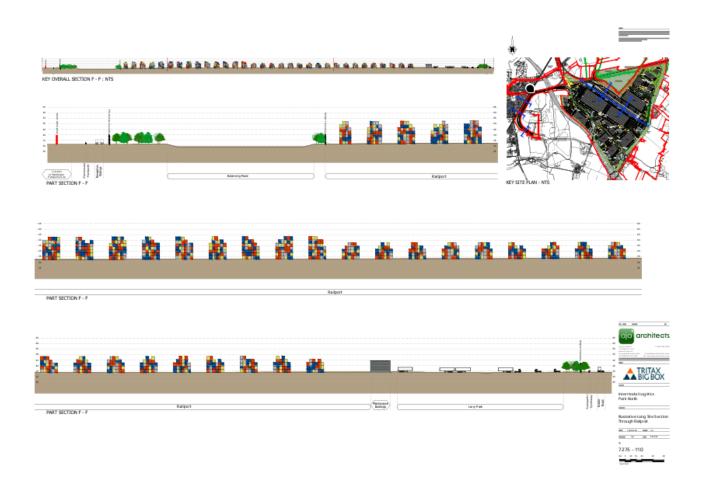

- 5.6 The later phases will require the installation of gantry cranes to an anticipated maximum of 5, over 5 loading lines and a round around, served by the traverser to move released engines to different lines.
- 5.7 The overall container loading slab comprises a level area of concrete approximately 750m x 105m running along most of the length of the sidings on the western side of the Railport sidings. This will allow the containers to be picked from wagons by overhead cranes and still enable an electric engine to be used at the head of the train for departure, or for when pushing wagons into the terminal on arrival.

Figure 5.3 A cross section of the Railport

Figure 5.4 A long section of the Railport

5.8 In this area, containers would be stored, using moving 'reach stacker' vehicles, and loaded/unloaded onto trains using gantry cranes when installed. On the eastern side of the Railport sidings the concrete slab is 22m x 750m. Up to two running lanes on each side of the Railport sidings will allow direct transfer from/onto road transport and these are included in the slab design.



Figure 5.5 An example of a gantry crane

- 5.9 Empty containers may be stacked in the separate empties area using the reach stackers or lighter empty container stackers, within the main loading and storage slab area. The number of containers will depend on the utilisation of the Railport being a combination of dwell times (days stored before being moved), mix of empty, laden and swap-body containers and therefore stacking density. The capacity is measured in TEU's, which stand for Twenty Foot Equivalent (TEU) (6.01m) long containers. There will primarily be a mix of 40' and 20' standard containers ISO containers handled by the Railport. 1x40' comprising 2 TEU in space terms. Individual ISO container heights are 8'6", 9' and 9'6"
- 5.10 Laden stacks would not exceed 5 containers in height, being a maximum of 14.5 metres, empty containers would be tiered and stacked to a maximum of 7 high, being a maximum of 20.3 metres within the container yard.
- 5.11 For European flows there will also be 45' long containers which are used on short-sea shipping routes, as well as lighter units called swap bodies. The latter have to be lifted with equipment that can lift from the bottom of the unit, rather than the top and have their own legs to allow them to be parked at a loading dock height.

Figure 5.6 Soft sided swap body wagon with bottom lift points

- 5.12 There is an estimated capacity of between 400,000 and 600,00 TEU on completion of the final phase, subject to the above.
- 5.13 The reception siding 5, in the western chord is designed to increase capacity for any rail linked buildings needing to operate trains to and from Scotland and the TransPennine, as they cannot be run direct from their own private sidings, should this be required.

Rail Connected Buildings

- 5.14 In accordance with the requirements of the NNNPS, areas that adjoin the Railport can be constructed with private sidings that connect into the reception sidings and mainline connections on to the Chatt Moss Line.
- 5.15 The commercial potential for rail connected buildings is addressed in the SRFI Needs Assessment and therefore is not repeated here.
- 5.16 There are two possibilities show below indicating how these buildings can be rail served, with tracks alongside a platform with level access into a warehouse or the sidings may be physically inside the warehouse, for handling materials requiring shelter from the weather, as well as specialist top lift for items such as metal coil or paper reels in classic cargo wagons.
- 5.17 This opportunity also raises the possibilities for packing or unpacking soft sided swap bodies

(see Fig 5.6) and using roller cages to provide express freight deliveries to and from other regions.

Figure 5.7 Private siding options to rail connected buildings

5.18 The direct rail connections could be installed either during Phase 1 or 2, or at a later date to suit customer requirements.

Chapter 6 ◆ EXISTING RAILWAY CROSSINGS

DEVELOPMENT, OPERATION & PHASING

Access Points

- 6.1 The DCO Order Limits include two public footpaths that cross the railway, facilitated by track level pedestrian level crossings. Introduction of the new Intermodal Logistics Park North will require the closure of Parkside #1, just to the west of Highfield Moss, and the Lowton level crossing, to the east of Highfield Moss. Increased pedestrian usage of these crossings would increase the risk rating of the crossings to an unacceptable level.
- 6.2 The footpath route either side of Parkside #1 will be retained and a footbridge constructed to maintain the current layout and accessibility. The closure of Lowton crossing will be accommodated by a footpath diversion on either side of the railway, taking pedestrians to the east and to use the existing Winwick Lane overbridge which has existing footway provision.
- 6.3 Parkside Road crosses the Chat Moss Line and the existing road bridge will be retained. However, the current bridge does not offer sufficient access for pedestrian and cycle flows that are envisaged because of the ILPN development. It is therefore required to construct a new cycleway/footway bridge to the east of the existing bridge to facilitate these additional flows.

Train Operating Safety

- 6.4 There is the potential for freight trains to be held at signals on their approaches to the ILPN. Where this happens, trains might temporarily restrict the paths or views at level crossings.
- 6.5 In the case of a train temporarily blocking a path, there is a risk pedestrians will clamber over or under the wagons of the stopped train, putting themselves at risk if the train moves off, or by stepping into the path of an oncoming train, on the other track. This has been assessed as a risk for the Parkside #1 pedestrian level crossing. If a westbound 775m train was held at a red signal prior to accessing the terminal it would obstruct the crossing. It is proposed therefore to be closed and a footbridge constructed over the railway at this location.
- 6.6 In the case where a train is held at a signal prior to entering the Railport, if the train does not block the level crossing but the end of the train is relatively close, it could partially obstruct the line of sight towards oncoming trains on the other line, potentially giving them insufficient time to complete their crossing. The oncoming train could be running at 90mph.

6.7 Following discussion with Network Rail, it has been assessed that the Lowton Level Crossing sight lines might be impeded for pedestrians crossing from south to north, by a west bound 775m train held at stop lights. This level crossing should be closed and the footpath diverted to the east over the existing Winwick Lane bridge, which has pedestrian footways.

Chapter 7 ◆ RAILPORT OPERATION

RAILPORT OPERATION

Operating Responsibility

- 7.1 The Railport operation will be under the control and management of suitably experienced operators appointed by the Applicant. This is in order to ensure that the railway and services Railport, as well as working with Network Rail and all involved stakeholders, will function well and be operated safely and efficiently.
- 7.2 The Railport will be an open access facility in accordance with the requirements of the Office of Rail and Road, as the rail regulator. This will mean that any Freight Train Operator may use the Intermodal Terminal for the delivery of trains to be unloaded and loaded with its customers' containers by the Railport Operator; and any haulier can collect and drop their customers' containers which have been or will be transported by rail, including empty containers.
- 7.3 For the purpose of the above 'containers' includes swap bodies where bottom lift equipment is available.
- 7.4 As each phase of the Railport is developed, an operating plan and management arrangements will be put in place by the Railport Operator, having taken into account the reasonable requirements of both on site and off site stakeholders, who use and benefit from the Railport services.

Maintenance and Repairing Responsibility

- 7.5 The Railport Operator will be responsible for commissioning and or undertaking repair, maintenance and renewal of the Railport, including the track, points and signalling etc.
- 7.6 The detailed design of the track layout in each phase will require there to be sufficient space between track centres to facilitate train examination by train crews where required, and suitable for drivers to walk between train ends if needs be.
- 7.7 Vehicular access for support services will be via the main entrance to the Railport, with a capability to access the reception sidings 1 and 2 through the Railport itself. Access to reception sidings 3,4 and 5 will be via a dedicated access route with separate entry point on Parkside Link Road West. This will also serve as an access route for Network Rail to gain access to the Chat Moss route between Newton-le-Willows station and the M6 overbridge.
- 7.8 Arrival and delivery of containers is anticipated to be largely, if not wholly, via the Railport Gatehouse, with lorry parking adjacent. Timed booking systems are expected to be utilised for collections and deliveries.

Chapter 8 ◆ CONCLUSION

CONCLUSION

Operating Responsibility

- 8.1 The ILPN Railport is situated within 5km of the WCML, a key part of Network Rail's Strategic Freight Network, and connected at Junction 22 of the M6 motorway providing direct access to the regional trunk road network.
- 8.2 The Railport design enables a very efficient intermodal terminal operation, capable of handling up to 16 No. 775m long intermodal trains per day. All the buildings on site will be rail served using HGV or Tugmasters and trailers, with the capacity for additional stabling of trains and a head shunt. The scheme also provides for Rail Connected buildings for dedicated rail services, if required.
- 8.3 The rail network capacity has been validated with Network Rail and there is confirmed capacity for 16 trains per day (32 movements) between 06:00 and 00:01, even without taking into consideration any night time movements between 00:01 and 6:00. The design of the mainline connections to the east and west end of the scheme and associated signalling has been considered with Network Rail. The signalling and operational interface arrangements have been validated by Network Rail's signalling Review Panel in support of the DCO application.
- 8.4 The impact of the scheme on local level crossings has also been reviewed with Network Rail. Parkside #1 and Lowton Level Crossings are to be closed, with Parkside #1 replaced with a footbridge over the railway and Lowton utilizing a footpath diversion via the nearby Winwick Lane overbridge.
- 8.5 The Railport will be an open access terminal in accordance with the requirements of the Office for Road and Rail (ORR), with the rail operations, including maintenance, repair and renewal, to be managed by a single entity to ensure a safe and efficient operation.
- 8.6 The scheme's rail design and capabilities are fully compliant with the requirements of the NNNPS, including allowing for rail connected buildings.

Appendix 1◆Parkside Logistics and Rail Freight Interchange Study

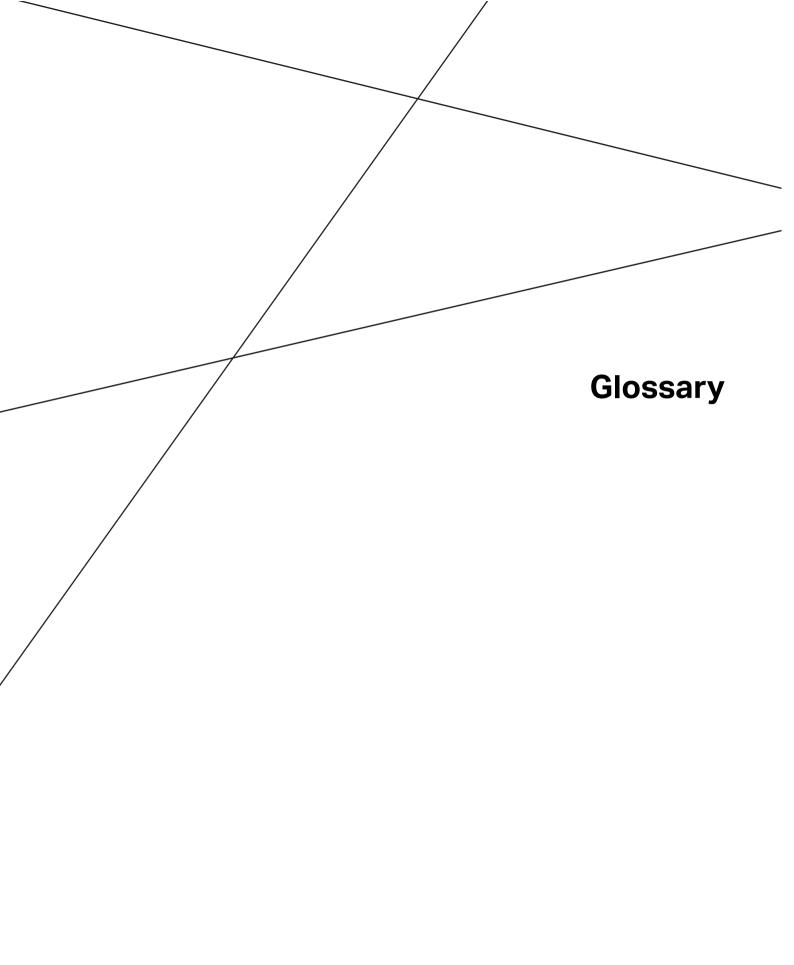
Parkside Logistics and Rail Freight Interchange Study August 2016

This study has been conducted by AECOM and Cushman & Wakefield on behalf of St. Helens Council to investigate the feasibility of delivery options for a road and rail-linked logistics development on land at the former Parkside colliery site. The study will help to inform and advise the preparation of the St. Helens Local Plan 2018-2033.

Quality information

Guanty milerination					
Document name	Ref	Prepared for	Prepared by	Date	Reviewed by
Parkside Logistics and Rail Freight Interchange Study	First draft	St Helens Council	James Mayes	27/05/2016	Geoff Clarke
Parkside Logistics and Rail Freight Interchange Study	Revised First draft	St Helens Council	James Mayes	08/06/2016	Michael Whittaker
Parkside Logistics and Rail Freight Interchange Study	Final draft	St Helens Council	James Mayes	05/07/2016	Geoff Clarke
Parkside Logistics and Rail Freight Interchange Study	Final	St Helens Council	James Mayes	01/08/2016	Geoff Clarke
Parkside Logistics and Rail Freight Interchange Study	Final	St Helens Council	Michael Whittaker	01/09/2016	Geoff Clarke

This document has been prepared by AECOM Limited for the sole use of our client (the "Client") and in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM Limited and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM Limited, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM Limited.


Contents

Glo	ossary		2
Ex	ecutive \$	Summary	4
1.	Introdu	ction	14
	1.1	Aim of the Study	14
	1.2	ATLANTIS Programme	14
	1.3	Site Location and History	14
	1.4	Previous Planning Policy Evidence Base Work Conducted	16
	1.5	Employment Land Evidence Base Work	16
	1.6	Stakeholder Engagement	18
	1.6.1	Workshop	18
	1.6.2	Online Survey	19
	1.6.3	One-to-One Discussions	20
	1.7	Competing sites	20
2.	Transpo	ort and Planning Policy Assessment	23
	2.1	Introduction	23
	2.2	European Policy	23
	2.2.1	White Paper 2011: Roadmap to a Single Transport Area – Towards a competitive and resource efficient system	•
	2.3	National Policy	23
	2.3.1	National Policy Statement for National Networks (2015)	23
	2.3.2	National Planning Policy Framework (2012)	27
	2.4	Regional	28
	2.4.1	Transport for the North Freight and Logistics Strategy	28
	2.4.2	Liverpool City Region (LCR) Growth Deal (2014)	29
	2.4.3	A Transport Plan for Growth	30
	2.4.4	Liverpool SUPERPORT Market Analysis Land and Property Report (2014)	32
	2.4.5	Liverpool City Region Long Term Rail Strategy (2014)	32
	2.5	Local Policy	32
	2.6	Green Belt Implications	35
	2.7	Emerging Local Plan	35
	2.8	Key Research Papers	36
	2.8.1	Mode Shift Benefit Values – Technical Report and Refresh	36
	2.8.2	Double-Deck Trailers: A Cost-Benefit Model Estimating Environmental And Financial Savings	36
3.	Market	Demand and Supply Assessment	38
	3.1	Introduction	38
	3.2	National and Regional Market Overview	38
	3.3	Drivers of Demand	39
	3.4	Document Review – Land Demand Indicators	40
	3.5	Market View of the Parkside Site	40
	3.6	The Demand for Rail-Linked Property	42
	3.7	Stakeholder Views on the Parkside Site	44
	3.8	Existing and Planned (S)RFI's	46
	3.8.1	Catchment Area / Wider Catchment Area	46
	3.8.2	Nationally	46

	3.8.3	Comparison of Alternative Sites	48
	3.9	Summary	51
4.	Operation	onal Requirements	53
	4.1	Introduction	53
	4.2	Major Infrastructure Components	53
	4.2.1	Rail Support Infrastructure	53
	4.2.2	Cargo Transfer Infrastructure	54
	4.2.3	Road Support Infrastructure	55
	4.3	Terminal Equipment	56
	4.4	Ancillary Services	59
	4.5	Specification and Functionality of Potential Parkside Logistics and Rail Freight Interchange	60
	4.5.1	Specification	60
	4.5.2	Functionality	60
5.	Rail Acc	cess	62
	5.1	Introduction	62
	5.2	Existing Rail Infrastructure	62
	5.3	Current services (2016)	63
	5.3.1	Chat Moss	63
	5.3.2	West Coast Mainline	64
	5.4	Future (2017-2018) services	64
	5.4.1	Chat Moss	64
	5.4.2	West Coast Mainline	65
	5.5	Post-HS2 (2026-33)	66
	5.6	Rail freight forecasts	66
	5.7	Committed / Planned Infrastructure Upgrades	69
	5.7.1	Northern Hub	69
	5.7.2	Strategic Freight Network	69
	5.8	Potential Origin/Destinations	69
	5.8.1	Chat Moss Line (East-West Route)	69
	5.8.2	West Coast Main Line	70
	5.8.3	Stakeholder Views	70
	5.9	Potential Site Access	72
	5.9.1	Potential Access Routes	73
6.	Road A	CCess	77
	6.1	Introduction	77
	6.2	Potential Site Access Options	77
	6.3	Summary of Site Access Options	80
	6.4	Local Highway Network	80
	6.5	Strategic Road Network	81
	6.6	Current and Forecast HGV Traffic Flows	83
	6.6.1	Impact of Rail Movements on HGV Traffic Flows	84
	6.7	Summary of Highway Access Issues	
7.	Public T	ransport and Active Travel	
		Introduction	88

	7.2	Public Transport Services	88
	7.2.1	Bus Network and Services	88
	7.2.2	Rail Network and Services	89
	7.2.3	Gap Analysis – Challenges and Opportunities	91
	7.2.4	Identification of Options	91
	7.3	Active Travel Routes	92
	7.3.1	Cycle Network	92
	7.3.2	Walkable Routes	92
	7.3.3	Gap Analysis – Challenges and Opportunities	93
	7.3.4	Identification of Options	94
	7.4	Travel Times	94
	7.5	Summary	94
8.	Options	Development	96
	8.1	Introduction	96
	8.1.1	Economic Modelling	96
	8.1.2	CO₂e Emissions Assessment	97
	8.1.3	Mode Shift Benefit Assessment (Sensitive Lorry Miles)	97
	8.2	Option 1	99
	8.2.1	Indicative layout	99
	8.2.2	Rail access	99
	8.2.3	Broad traffic generation	100
	8.2.4	Road access	100
	8.2.5	CO₂e Savings and Mode Shift Benefit	101
	8.2.6	Economic viability assessment	101
	8.3	Option 2	103
	8.3.1	Indicative layout	103
	8.3.2	Rail access	103
	8.3.3	Broad traffic generation	103
	8.3.4	Road access	104
	8.3.5	CO₂e Savings and Mode Shift Benefit	104
	8.3.6	Economic viability assessment	105
	8.4	Option 3	106
	8.4.1	Indicative layout	106
	8.4.2	Rail access	106
	8.4.3	Broad traffic generation	107
	8.4.4	Road access	107
	8.4.5	CO₂e Savings and Mode Shift Benefit	107
	8.4.6	Economic viability assessment	108
	8.5	Option 4	109
	8.5.1	Indicative layout	109
	8.5.2	Rail access	110
	8.5.3	Broad traffic generation	110
	8.5.4	Road access	110
	8.5.5	CO₂e Savings and Mode Shift Benefit	111

	8.5.6	Economic viability assessment	. 112
	8.6	Potential Environmental Impact	. 113
	8.7	Policy compliance	. 116
	8.8	Pros and Cons of the Rail Terminal being on the West or East of the M6	. 117
	8.9	What has Changed Since the Last Planning Application?	. 119
9.	Conclus	sions and Recommendations	. 121
	9.1	Transport and Planning Policy Assessment	. 121
	9.2	Market Demand and Supply Assessment	. 121
	9.3	Rail Access	. 122
	9.4	Road Access	. 122
	9.5	Green Belt Implications	. 123
	9.6	Core Strategy Policy CAS 3.2 Amendments	. 123
	9.7	Summary	. 125

Glossary

Term	Definition
Strategic Rail Freight	A large multi-purpose rail freight interchange and distribution centre linked into both the
Interchange (SRFI)	rail and trunk road system. (See Section 2.2.1 for SRFI qualifying criteria as per the
	National Planning Statement).
SMART Motorway	A section of motorway, which uses active traffic management techniques such as
	variable speed limits and hard shoulder running at busy times to increase capacity.
Strategic Road	Nationally significant roads used for the distribution of goods and services, and a
Network (SRN)	network for the travelling public. Highways England manages the SRN.
W8 Gauge Rating	The minimum rail loading gauge which allows for the transportation of high cube
	containers. SRFIs must be connected to a railway line with at least W8 gauge rating.
Primary movements	Truck movement from Regional Distribution Centre to Regional Distribution Centre.
Primary – local	"Last leg" road movements where the containers are unloaded from a train and then
movements	taken locally to Regional Distribution Centres.
Secondary	Truck movement from Regional Distribution Centre to other local warehouses or direct
movements	to stores.
Small Rail Freight	Rail freight terminal facilitating 1-3 trains per day
Terminal	
Medium Rail Freight	Rail freight terminal facilitating 4-8 trains per day
Interchange	
Large Rail Freight	Rail freight terminal facilitating 9+ trains per day
Interchange	
CO ₂ e	All greenhouse gas emissions eg Methane, Ozone, Nitrous Oxide converted to their
	CO ₂ equivalent according to their global warming potential e.g. 1Kg of methane is
	equivalent to 4kg of CO ₂ therefore 1kg Methane is 4kg CO ₂ e
Active travel	An approach to travel and transport, which focuses on physical activity (e.g. walking
	and cycling); as opposed to carbon-dependent means.
Loading gauge	The height and width profile of a rail route.
Rail siding	A low-speed track section, which is distinct from the main line, branch line or spurs.
	Sidings may connect to through track or to other sidings at either end.
Tri-modal terminal	A freight terminal which is connected to three transport ways for example road, rail and
	inland waterway.
Intermodal transport	Transportation using two or more transport modes with goods transported in intermodal
	loading units (ILUs) such as containers to avoid the handling of goods during transit.
Pad tracks	The section of track at an intermodal rail terminal which is accessible to trucks for
	loading and unloading.
Pantograph	A device that collects electric current from overhead lines for electric trains.
Locomotive	A powered railway vehicle for pulling trains.
Staging areas	An area for temporary container storage based on a calculated percentage of
	containers handled and the average dwell time in the terminal.
Lifting equipment	Mechanical handling equipment used in intermodal terminals for the transfer of
	containers. Examples include rail-mounted gantry cranes, and reach stackers.
Shunting	Refers to movements made on private land e.g. the movement of equipment or
	containers at a transport depot or terminal.
Rail loop	A place on a single line railway where trains travelling in opposite directions can pass
	each other.
Headways	A measurement of the minimum possible distance or time between trains, without a
	reduction in speed.
Semi fast service	A direct service between two stations, which makes no stops in between.
Stopping service	A passenger rail service, which stops at all intermediary stations on its route.

AECOM 2

Executive Summary 01

Executive Summary

Introduction

This study has been conducted by AECOM and Cushman & Wakefield on behalf of St. Helens Council to investigate the feasibility of delivery options for a road and rail-linked logistics development on land at the former Parkside colliery site. The study will help to inform and advise the preparation of the St. Helens Local Plan 2018-2033 and has therefore been conducted in compliance with the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG).

Since the colliery was decommissioned in 1993, there has been interest in bringing the site forward for development, with planning applications submitted for a Strategic Rail Freight Interchange (SRFI). In 2010 background papers were prepared by consultants Scott Wilson (now AECOM) to support the identification of the site as a strategic location for a SRFI in the St. Helens Core Strategy (2012).

Transport and Planning Policy Assessment

As is shown in the analysis presented in Chapter 2 the development of new rail-linked logistics is strongly supported at both a national and regional policy level. The Parkside site itself is also named specifically in the **Transport for the North Freight Strategy (2016)** as a site suitable for consideration of rail freight interchange viability and is identified in the **Liverpool City Region Growth Plan and Strategic Economic Plan (2014)** as one of the key projects in delivering SUPERPORT.

Market Demand and Supply Assessment

As a site adjacent to the M6 and with the benefit of significant scale, the Parkside site best lends itself to logistics and distribution uses.

It is clear from the market demand and supply assessment and stakeholder engagement that there is sufficient demand for a SRFI in the North West. Nationally the demand for both warehouses and rail freight interchanges is along the M6/M1 corridor between Manchester and London.

Stakeholders are also very positive about the site's feasibility as a SFRI. This is mainly due to its unrivalled ability to serve both North-South intermodal flows on the West Coast Mainline and East-West intermodal flows on the Chat Moss line. The site can also receive trains from all directions (north, south, east and west) which provides maximum operational flexibility and resilience to allow changes in market trends to be catered for. Road access is also good with the M6 and M62 in close proximity to the site.

In comparison to other current and potential SRFI sites, the Parkside site scores well on investment criteria metrics. No other sites in the catchment area have the potential to receive trains from all directions, with some only able to receive trains from one direction. For example Garston can only receive trains from the South. Additionally the Parkside site's access to both the M6 and M62 is highly advantageous meaning that Parkside has the potential to be an 'all points' operation, offering as much in terms of intermodal activities as it might in terms of being a destination and general logistical base in its own right. The market feels that there is room for both Port of Salford and Parkside due to growth in the market demand for intermodal terminals in the North West, as stated in the Transport for the North Freight and Logistics Strategy (2016).

It is therefore felt that the site is of national importance as well as regional significance in relation to the market demand and need for the delivery of new and improved SRFIs, and in supporting economic and employment growth objectives in St Helens and the Liverpool City Region.

Operational Requirements

It is critical to match the specification and functionality of a rail freight terminal at Parkside with the freight market in the surrounding area. Therefore as part of this study, the broad operational requirements for varying sizes of rail freight interchanges has been provided with the demand (number of trains per day) then used to match the required specification and functionality of the site.

The following important aspects of developing the specification and functionality of a rail freight interchange have been considered:

- Major infrastructure components:
 - Rail support infrastructure;
 - Road support infrastructure;
 - Cargo transfer infrastructure;
- · Terminal equipment; and
- Ancillary services

Typically intermodal terminals need to have a balance between these three components to avoid mismatched investment in any one terminal area. In order to determine this balance, each component has been measured in terms of their throughput capacity.

Table E1 outlines the specification requirements that have been utilised to consider the potential scale of rail facility that could be delivered at the Parkside site.

Table E1 – Specification of the potential rail freight terminal

Terminal size		Small Medium		Large	
Indicative number of trains per day		1-3	4-8	9+	
Terminal track length		>750m	>750m	>750m	
Number of handling tracks		2	4	6+	
	Reach stackers	✓	×	*	
Handling equipment	Rail Mounted Gantry	×	✓	✓	

Table E2 outlines the functionality requirements of the potential site.

Table E2 - Functionality of the potential rail freight terminal

Terminal size		Small	Medium	Large
Indicative number o	f trains per day	1-3	4-8	9+
	Road to rail	✓	✓	✓
	Rail to road	✓	✓	✓
Core services	Rail to rail	*	✓	✓
	Warehousing	✓	✓	✓
	Container storage	✓	✓	✓
	Reefer / Dangerous Goods services	✓	✓	✓
Ancillary services	Customs facility	*	✓	✓
	Equipment repair area	×	*	✓
	Terminal trucking services	×	*	✓

Rail Access

Parkside is well situated for potential rail access, being adjacent to both the West Coast Mainline (to the west of the site boundary) and the Chat Moss line (running along the northern edge). A series of junctions and chords connect both routes, allowing trains to arrive and leave the area in all four directions.

To the north and south of the site, the West Coast Mainline is a mostly four track, fully electrified railway running between Scotland and London via the North West and West Midlands. It is a key freight and passenger artery. The Chat Moss site runs east to west linking Liverpool to Manchester, Yorkshire and east coast ports, and is a two track partly electrified route.

There are currently four passenger trains per hour off-peak utilising the Chat Moss route adjacent to the Parkside site with Transpennine Express, Northern and Arriva Trains Wales all operating services. There are also a number of freight services utilising the route (such as Drax-Liverpool biomass). However, these tend to operate outside of peak hours and are very limited in number (3-4 trains daily). At the December 2017 timetable change, it is forecast that six trains per hour (off peak) will be utilising the Chat Moss line past the Parkside site.

On the West Coast Mainline Virgin (West Coast) operates two trains per hour off-peak. Both originate at London Euston and terminate in Scotland (one fast via the Trent Valley and one via the West Midlands). As of April 2016, there are a considerable number of freight services that utilise the route (carrying between 5-10 million tonnes per annum¹). In a standard off-peak hour, there is an average of around 1 timetabled path per hour. However actual utilisation of these paths differs on a day to day basis due to actual market demand. It is not expected that there will be any major uplift in Long Distance High Speed passenger provision on the West Coast Mainline by Virgin West Coast in the near future.

Post-2018 Alliance Rail Holdings have secured paths to operate six return services each day between Blackpool and London. There will therefore be up to three express passenger trains per hour utilising the West Coast Mainline past the Parkside site off-peak. There is also predicted to be an increase to 1.5-2 freight paths per hour on this section of route by 2023. In the longer term the construction of HS2 is likely to offer additional paths on the legacy West Coast Mainline so it is not envisaged that obtaining train paths should be an unsurmountable problem.

¹ Network Rail Freight Market Study, 2013

Road Access

To achieve access to the west of the site, reinstating the former access road from the A49 (Figure 6.1, **no.1**) is considered to be the most feasible option. This access requires minimal investment due to the junction and former road still being in place. The alternative access route via the access lane to Newton Park Farm (Figure 6.1, **no.2**) has been discounted as it is unsuitable for HGVs.

In order to facilitate a larger-scale development at Parkside, it is likely that a direct access onto M6 Junction 22 will also be required to minimise the amount of traffic on the local network. The preferred option to provide access to the west of the M6 from the eastside of the M6, from a technical, cost and deliverability point of view would be a box type tunnel structure under the M6 but away from the Chat Moss railway line (Figure 6.1, **no.4**). This option is preferable because the construction of the structure can take place under the live running motorway and whilst not without risk and complexity, from a high level assessment point of view it represents a better option than an alignment adjacent to the Chat Moss railway line (Figure 6.1, **no. 3**). The option to build a bridge over the M6 (Figure 6.1, **no.5**) has been discounted mainly due to several operational challenges related to gradients and large infrastructure cost required to bridge over a SMART motorway.

On the east side of the M6, a new road would also be required. This could potentially run parallel with the M6 to connect directly to the Junction 22 roundabout, or could utilise the former road known as Barrow Lane, which connects to the A579 approximately 500 metres north east of Junction 22.

For a medium and large scheme with the intermodal terminal located on the east of the M6, it is felt that the main site entrance would ideally be off the A579 around 0.5km to the north east of Junction 22 on the M6 (Figure 6.4, **no.6**). Having the main site entrance located here would minimise the distance trucks had to travel on the local network before joining the Strategic Road Network (SRN) at Junction 22 of the M6 and additionally, it would mean the site entrance is within the St. Helens boundary. The volume of traffic expected to be accessing the site necessitate a new junction to be constructed. This is likely to be a demand responsive signalized junction however further detailed assessment is required to understand the exact specification of the junction.

The road access to the site at present is constrained by the reliance on a single access junction, which connects to a single-carriageway road, the A49, which also serves a number of residential properties and local services and facilities. Despite the presence of the M6 immediately adjacent to the site, the driving route to access the motorway network from the existing access junction is approximately 3 km to both the north and the south.

Although both of the M6 junctions (J22 and J23) are scheduled to be upgraded as part of the Smart Motorway scheme, there are a number of proposed large developments adjacent to both junctions that would increase the pressure on the SRN at these locations as and when they are brought forward. Likewise, there is potential for future junction improvement works to come forward at M6 Junction 23, as a result of a number of proposed developments in Haydock. As with M62 Junction 9, however, any spare capacity is likely to be taken up by background growth and committed development trips.

Finally, the proximity of Croft Interchange, M6 Junction 22, and M62 Junction 9 means that there can be issues with weaving traffic between these junctions.

An initial estimate of the likely trip distribution from Parkside would indicate that around 85% of trips would travel south along the A49, to access the SRN at M62 Junction 9. This route passes through three junctions in Winwick — A49 / Hollins Lane, A49 / Golbourne Road, and A49 / Winwick Link Road, which all presently experience congestion at peak periods. It is likely that junction improvement works would be required at all these junctions to accommodate any additional traffic from Parkside. It should be noted that all three junctions are within Warrington Borough Council's administrative boundaries.

Public Transport

There are three existing bus services (No. 22, No. 34 and No. 360) in operation in the vicinity of the site. The No. 34 operates every 20 minutes, the No. 360 operates every 30 minutes and the No. 22 operates hourly. At present there are bus stops located along the A49 to the west of the site and along the A572 to the north of the site.

It can be seen that Newton-le-Willows Station is located approximately 1 mile to the north west of the site, a reasonable walking distance for commuting. Newton-le-Willows station is situated on the Liverpool to Manchester Line and adjacent to the West Coast Main Line, and has two platforms. The station benefits from relatively high frequency services with hourly services offered by both Northern and Arriva Trains Wales. Earlestown Station offers an additional service that is operated by Northern Rail between Liverpool and Warrington (hourly Monday-Saturday).

The site is relatively well served by public transport; however peripheral times that are required to enable workers to arrive in time for the early shift (6am-2pm) and leave after the late shift (2pm-10pm) are not well catered for.

With regards to cycle routes it can be seen that whilst there is one continuous long distance route (the Sankey Valley Trail) within the vicinity of the local area, there is little opportunity to access the site via this route due to severance caused by the West Coast Mainline. There are just two points to access the route within the immediate area surrounding the site, via the Sankey Trail through Alder Lane or Old Alder Lane. There are a few other local routes within relative proximity to the site which are traffic free; however these are not part of the National Cycle Network and are fragmented, i.e. there is a lack of an integrated network of routes. The identified walkable routes consist of public rights of way (PRoW), shared-use paths, green spaces, parks and waterways. Minor roads have also been included as these tend to be quieter routes which increase the propensity to walking.

There are issues and opportunities presented by the development of the Parkside site on the local network of services and routes. It is clear that there does need to be investment made in local transport provision to enable employees to access the site at the forecast time periods to allow a logistics development at Parkside to function. Improvements made to the local network would also benefit the local community in the vicinity of the site in terms of reducing severance, improving accessibility and providing a network more conducive to active travel. The Meresytravel Bus Alliance and St Helens Bus Review process will during its regular review, provide an opportunity to enable bus improvements and better access to Parkside to be achieved.

Options Development

This section outlines options for small (3 trains per day), medium (8 trains per day) and large (10-12 trains per day) logistics and rail freight interchanges. The following options have been developed:

- 1 x Small
- 1 x Medium
- 2 x Large

Table E3 provides a summary assessment of the 4 options developed.

Table E3 – Summary of options assessment

Option	Size	Trains per day	Floor space (sq. ft.)	Rail Access	Cost of Rail Terminal (£)	Main Site Access	Cost of Road Access (£)	CO ₂ e saved annually (tonnes)	Year of Economic Payback
1	Small	3	750,000	South and west	£12,162,636 - 15,101,036	A49	£2,121,000	6,458	N/A
2	Medium	8	1,000,000	North, south, east, west	£24,994,084	A573	£9,501,324.	12,515	2046
3	Large	10	1,250,000	North, south, east, west	£35,642,306	A573	£9,930,000	14,820	2057
4	Large	12	4,500,000	North, south, east, west	£38,899,641	A579	£29,579,122	16,200	2044

Conclusions and Recommendations

There is clear policy justification for the development of Parkside into a Logistics and Rail Freight Interchange as part of a network of intermodal terminals.

As far as national, sub-regional and local policy is concerned, major policy developments since the adoption of the Core Strategy such as the publication of the National Policy Statement for National Networks (NPSNN) (2015) have strengthened the policy justification for a rail-linked development at the Parkside site, and help support the exceptional circumstances case required to meet the national Green Belt planning policy tests. The Parkside site itself is named specifically in the Transport for the North Freight Strategy (2016) as a site suitable for consideration as a rail freight interchange and is identified in the Liverpool City Region Growth Plan and Strategic Economic Plan (2014) as a key project in delivering SUPERPORT and the wider Liverpool City Region Freight and Logistics Hub.

The development of the site to accommodate a development of up to 1 million square feet, 8 trains per day (Medium Option) could be accommodated within the existing motorway network taking into account proposed infrastructure developments as part of RIS 1, notwithstanding highways and environmental constraints related to a sole vehicular access via the A.49.

To assist in the build-out and viability of the development, up to 750,000 sq. ft. could be supported (subject to detailed analysis) with access solely via the A49 providing:

- Three main sets of mitigation measures are made on the A49.
- o Land is safeguarded for rail to ensure that later phases are not constrained.
- Road access is provided under the M6 to the eastern side and through to the A579 to service all development following the first phase, and at second phase and beyond, to re-route HGV traffic via the eastern part of the site. Domestic (cars) traffic serving the west side would continue to access via the A.49.
- Environmental and heritage concerns are addressed and appropriate mitigation measures are introduced to ameliorate any adverse impacts on the site and neighbouring communities.
- Masterplanning proves deliverability of the whole site (east west combined development).

The site could support a larger scale development (12 trains a day) by utilisation of the eastern side of the site. The eastern side could be used for the core rail freight terminal or additional intermodal sidings. It could also be used for other traffics such as automotive or express parcels. In addition to mitigation work on the A49, once traffic levels reach an agreed level, HGV access for land both west and east of the M6 must only be permitted via the east and a new link road to the M6 J22 via a new junction on the A579.

It is fundamental to the delivery of a viable SRFI, that land on the west and east sides of the M6 is included for future development, including the associated road access to the A579.

Because of this east-west connectivity we suggest that consideration is given to the modification of Core Strategy CAS 3.2 to achieve a development which aligns with our conclusion that a medium scale or larger facility is appropriate for this area. Both the east and west sides of the M6 at the Parkside Site will be required for this scale of development. We envisage a scenario where as a first phase the development, is expected to commence on the western side accessed by road off the A49. This would assist in supporting the financial case for the development (required in order to make the development viable). Subsequent phases must have rail access. HGV road access for latter phases will be exclusively provided from the eastern side of the site to junction 22 of the M6 via the A579. This creates a requirement for both west and east sides of the M6 to be released from the Green Belt.

As part of this, the required land (to east and west of the M6) would need to be allocated for the intermodal terminal along with land required for the associated rail infrastructure. The provision of road access arrangements under the M6 to link the west side to the east side and access to the M6 is fundamental to the development of this site as access for LGVs and HGVs via the A49 should be prohibited as traffic levels grow.

This development should only take place in the context of an agreement to safeguard land for the necessary rail and road infrastructure on the western and eastern sides, to ensure that the build-out of early phases does not constrain future development and especially should consider the need for sustainable transport. Any masterplan for the whole site (east and west) would have to allow for the land safeguarded for the rail and road infrastructure. This masterplan should consider Highways and Traffic Management implications including a Traffic Management Plan and wider environmental issues which have not been covered in this brief.

With regard to release of Green Belt land under exceptional circumstances, it is crucial for the delivery of a viable SRFI, that land on the west and east sides of the M6 is included for future development, including the associated road access to the A579. Without the required release, the market attractiveness, operational efficiency and financial viability of a SRFI will be adversely affected.

It is recommended that St. Helens, Wigan and Warrington Councils work together to meet the range of national and sub-regional sustainable freight policy requirements. There is currently no rail freight terminal in any of the three areas capable of serving the needs of the local population and industry. It is believed that one "purpose-built" rail terminal at the Parkside site could serve the three Councils and the wider city regions, and help to reduce the long distance road trunking movements on busy routes such as the M6 and M62. As well as reducing congestion and improving journey time reliability, it would result in reductions in carbon dioxide and other pollutants as rail freight is 76% less polluting than road freight.

Through cross border collaboration between the local authorities, the development of the required case for an area wide mitigation package of infrastructure improvements could be brought forward in conjunction with Highways England to support the development of Parkside and the wider economic and employment aspirations of Wigan and Warrington Councils.

From industry consultation it is clear that there is more than enough demand to support a SRFI in the North West, with Parkside regarded as the best placed site to satisfy this need. This narrative is evidenced through the positive findings from the workshop, online survey and one-to-one discussions presented throughout this report. Indeed we have consulted with at least two companies who would be seriously interested in running the intermodal terminal at this site.

The opportunities for rail access from the site are second to none in the North West and also nationally with access to the West Coast Mainline and Chat Moss line easily achievable. This allows train movements to/from the north, south, east and west to be catered for at the site provided the required internal rail layout is implemented. Based on current evidence it is likely that 8 trains can be feasibly serviced by Parkside in the medium term. We would also recommend early formal engagement with Network Rail and Rail North to establish the viability of paths to the forecast destinations in a pre and post HS2 environment within the current and future passenger franchises.

Our transport analysis has confirmed that road access is potentially good with the site in relatively close proximity to the M6 (J22) and M62 (J9) allowing access to the Strategic Road Network at around 2 miles from Parkside. However there are junction capacity issues to be overcome at three junctions on the A49 at Winwick leading to J9 of the M62. From our engagement with Highways England, the development of the site to accommodate a development of up to 1 million square feet, 8 trains per day (Medium Option) could be accommodated within the existing motorway network taking into account proposed infrastructure developments as part of RIS 1. It has been concluded that the western part of the Parkside site is capable of supporting a small development on its own. The site could support a larger scale development (12 trains a day) by utilising of the eastern side of the site. The eastern side could be used for the core rail freight terminal or additional intermodal sidings.

The study has established that from an operational and financial perspective a small terminal is not viable and that only a terminal that is at least a medium would be operationally and financially viable and thus ultimately deliverable as a sustainable development. It is important to note that unlike a purely road based development there are particular operational requirements for intermodal freight terminals that are crucial to include at the design stage to meet current and forecast future requirements and to minimise terminal operational costs for the operator and user.

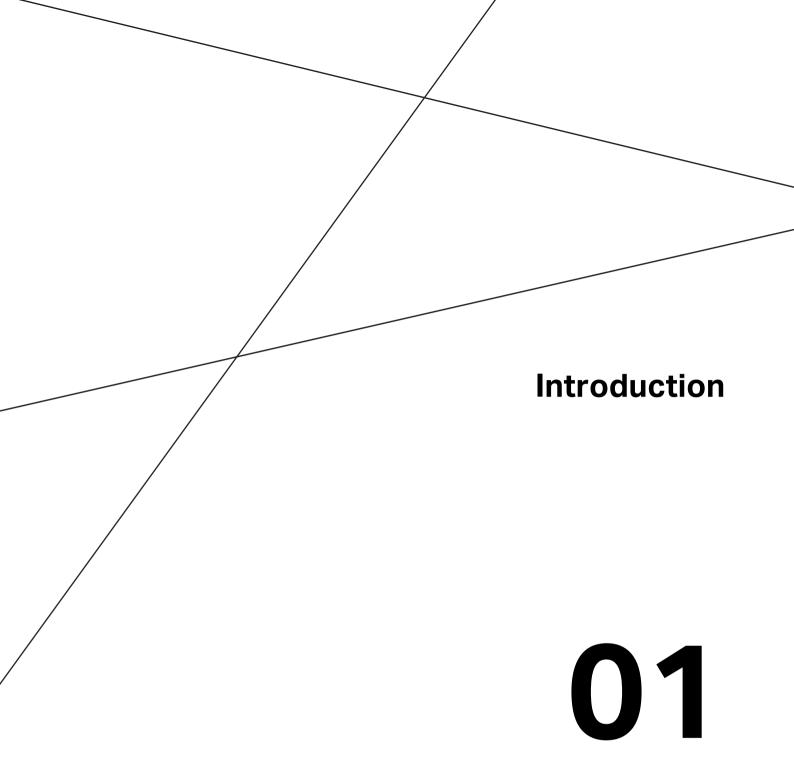
Table E4 summarises the key reccomendations in relation to developing a logistics and rail freight interchange at Parkside.

Table E4 – Key recommendations

Rail Access

- Based on current evidence it is likely that 8 trains can be feasibly serviced by Parkside in the medium term.
- Early formal engagement with Network Rail and Rail North is required to establish the viability of paths to the forecast destinations in a pre and post HS2 environment within the current and future passenger franchises.

Road Access


- The development of the site to accommodate a development of up to 1 million square feet, 8 trains per day Medium Option could be accommodated within the existing motorway network taking into account proposed infrastructure developments as part of RIS 1, notwithstanding highways and environmental constraints related to a sole vehicular access via the A49.
- To assist in the build-out and viability of the development, up to 750,000 sq. ft. could be supported (subject to detailed analysis) with access solely via the A49 providing:
 - o Three main sets of mitigation measures are made on the A49.
 - o Land is safeguarded for rail to ensure that later phases are not constrained.
 - Road access is provided under the M6 to the Eastern Side and through to the A579 to service all development following the first phase, and at second phase and beyond, to re-route HGV traffic via the eastern part of the site. Domestic (cars) traffic serving the west side would continue to access via the A49.
 - Environmental and heritage concerns are addressed and appropriate mitigation measures are introduced to ameliorate any adverse impacts on the site and neighbouring communities.
 - Masterplanning proves deliverability of the whole site (east west combined development).

Green Belt Implications

- It is fundamentally crucial that land on the west side of the M6 and to the east is included for future development including the associated road access to the A579.
- •
- As part of the development, an initial rail connection allowing access from the west (and ideally also to the east) should be provided on the alignment for the intermodal rail terminal.

Core Strategy Policy CAS 3.2 Amendments

- Consideration should be given to the modification of CAS 3.2 to provide a more flexible policy position to support a viable and deliverable SRFI scheme to come forward.
- Green Belt boundaries to the east of the M6 will be affected by these proposals, amendments to Green Belt boundaries would be justified by the arguments presented in this report. This requires a review of Green Belt policy to ensure consistency between land requirements of a SRFI development and Green Belt boundary.
- The Planning policy framework should be guided by the new Transport for the North, Freight and Logistics Strategy.
- Mitigation measures addressing the growth in local traffic should be included.
- Land should be allocated for rail access and suitable terminal facilities.
- New road access should be brought forward via an underpass under the M6 and a new link road to the A579.
- This is a unique opportunity to re-connect a formerly rail served site in an excellent geographical location into a modern SRFI that will meet the needs of modern logistics in the region.

Introduction

1.1 Aim of the Study

This study has been conducted by AECOM and Cushman & Wakefield on behalf of St. Helens Council to investigate the feasibility of delivery options for a road and rail-linked logistics development on land at the former Parkside colliery site. The study will help to inform the preparation of the St. Helens Local Plan 2018-2033 and has therefore been conducted in compliance with the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG).

It is also important to note that this study has been prepared independently of the Joint Venture between St Helens Council and Langtree to bring forward development at the site.

1.2 **ATLANTIS Programme**

The study will also be used to inform and support the ATLANTIS Programme. This is a European transnational project that is seeking support under the EU's new Motorways of the Sea.

1.3 Site Location and History

Parkside refers to the 600 acre plot of land which was the former location of Parkside Colliery. The colliery which employed roughly 2,000 people until its closure in 1993 forms part of the Lancashire Coal Field. The site is located to the east of Newton-le-Willows, a market town of over 22,000² in the Metropolitan Borough of St. Helens. The site is abutted by Lowton (Metropolitan Borough of Wigan) and Winwick (Borough of Warrington).

In terms of road infrastructure, the site is dissected by the M6 motorway, the M62 and A580 are also in close proximity. The site is also crossed by both the West Coast Mainline and the Liverpool to Manchester (Chat Moss) lines. The location of the site and surrounding transport infrastructure can be seen in Figure 1.1.



Figure 1.1 - Location of Parkside Site

There is a longstanding history of organisations wishing to bring forward the former colliery site for development. The previous owners of the site, Astral Developments/Prologis originally submitted a planning

14

² 2011 Census AFCOM

15

application to St. Helens and Warrington Borough Councils in 2006 to develop a SRFI with over 700,000 square meters of rail served warehousing, train assembly area, container depot, cargo exchange, secure multi-modal access terminal and waste recycling centre at the former colliery site.

Astral/Prologis withdrew their planning application in July 2010, ultimately blaming the economic climate and market conditions. This withdrawal followed a lengthy period of pre-application discussions, planning applications and amendments between the developer, Prologis and St. Helens Council, the Highways Agency (now Highways England) and Warrington Borough Council, which began in 2004³.

Figure 1.2 is an extract from the Astral Developments planning application and shows the full provisions of their previous SRFI application.

Parkside Strategic Rail Freight Interchange

An application for planning permission made in outline to St Helens Metropolitan Borough Council and Warrington Borough Council for the development of a Rail Freight Interchange on a site of 272 hectares at, and around, the former Parkside Colliery, to provide:

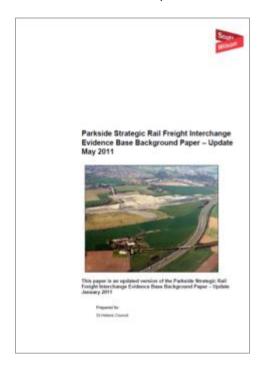
- up to 715,000 sq m of rail served warehouse and distribution buildings
- train assembly area
- a container depot
- a cargo exchange
- multi-modal secure access terminal
- waste recycling centre
- with ancillary buildings up to 2,500 sq m
- up to 18,600 sq m of Parkside Business Centre (B1 office space)
- up to 9,300 sq m Park Centre to include:
 - up to 4,300 sq m recreation and leisure space
 - up to 2,500 sq m (A1) retail space
 - up to 2,500 sq m of (A3, A4, A5) space for eating and drinking
 - crèche
- power generating facilities (including 1,850 sq m of ancillary buildings)
- a Countryside Park
- new highway works including a relocated M6 junction 22
- public transport interchange
- access, parking, servicing, infrastructure and landscaping
- ground re-modelling
- the re-location of Newton Park Farm Manor House and Barn

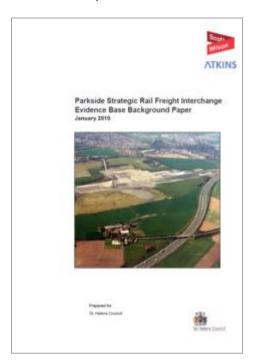
Figure 1.2 - Extract from Parkside SRFI Volume 1 Planning, Design & Access Statement⁴

In 2014, approximately 230 acres of the former colliery site was purchased in a joint venture between St. Helens Council and Newton-le-Willows based developer Langtree from the previous owners⁵. It is understood

³ http://www.sthelens.gov.uk/media/158581/ex024.pdf

⁴ http://www.sthelens.gov.uk/media/253586/ex031.pdf

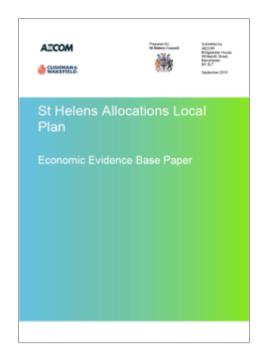

⁵ http://www.langtreepp.co.uk/development/parkside-colliery


that Parkside Regeneration LLP are preparing development proposals to bring forward logistics development on the site.

1.4 Previous Planning Policy Evidence Base Work Conducted

The St. Helens Core Strategy (2012) identified Parkside as a strategic location for a SFRI in Policy CAS 3.2. Background papers were prepared by Scott Wilson (now AECOM) to support the identification of the site as a strategic location in the Core Strategy. The Core Strategy identified the potential to provide an SRFI of between 85 and 155 hectares in size. The Parkside site was not counted within the Core Strategy supply of suitable sites for general market employment land, as it was considered that if a SRFI was developed, it would be strategic in nature and therefore should not be counted as meeting general market employment land needs.

The Council is currently in the process of preparing a new Local Plan which will contain all policies and allocations and will replace the Core Strategy and Saved Unitary Development Plan Policies (2014). As part of the preparation of the Local Plan, the Council is currently undertaking a Green Belt review to find land to accommodate housing and employment uses. The Parkside site has elements of brownfield and greenfield land and lies within the Green Belt, therefore in accordance with National Planning Policy exceptional circumstances will be required to allocate the site for development in the new Local Plan.


1.5 Employment Land Evidence Base Work

Since the adoption of the Core Strategy in 2012, there have been two new evidence based studies prepared relating to employment land provision in St. Helens.

In 2015, AECOM in partnership with Cushman & Wakefield developed the St. Helens Allocations Local Plan – Economic Evidence Base Paper. The purpose of this Paper was to provide an update on the economic development situation since the adoption of the St. Helens Core Strategy in 2012. It also provides a refresh of the employment land market evidence supporting the Core Strategy. Where required, the paper provides recommendations for change through the remaining elements of the St. Helens Local Plan, chiefly the Allocations Local Plan.

The Paper indicates that large scale logistics is the most active market in the region and a particular opportunity for St. Helens. There is however, zero provision of suitable land for large scale logistics and distribution uses within the Borough's identified employment land supply at present. Therefore, the Paper concludes that there is currently an imbalance between demand and supply for large scale distribution and manufacturing sites in the Borough.

The Paper recommends that as part of the preparation of the Local Plan, a search is carried out to identify new employment sites that could meet the demands of a large scale logistics and distribution site. The Paper states that the Parkside site remains crucial in meeting overall economic development aspirations for the Borough.

In 2015 BE Group were commissioned by St. Helens Council to undertake an Employment Land Needs Study (ELNS) to provide robust evidence of objectively assessed need (OAN) for employment floorspace in the Borough. The ELNS found that St Helens' key location on the M6 and M62 motorways means that it is ideally positioned in the North West to provide a critical role in the large-scale logistics sector. The ELNS identified an employment land OAN baseline of 174ha for St. Helens from 2012 up to 2037. The ELNS also sought to consider the potential of SuperPort and a SRFI at the former Parkside Colliery increasing demand for employment land in St Helens through multiplier effects, particularly in the large-scale logistics sector. Accounting for the potential uplift in employment land demand due to these potential major projects, the ELNS concludes that St. Helens has an overall employment land objectively assessed need of 214ha from 2012 up to 2037 (the 214ha does not include the actual land needed to deliver a SRFI at Parkside), this compares to an employment land requirement of 37ha up to 2027 in the Core Strategy.

In summary, a considerable amount of previous work has been conducted in relation to the Parkside site and employment land needs in the Borough. This study aims to build on this work.

1.6 Stakeholder Engagement

A key part of the study has been engaging with stakeholders on the potential for a Logistics and Rail Freight Interchange at Parkside. Due to the important strategic nature of the study the project team have sought to engage with as wider range of stakeholders as possible. This has been achieved through the following engagement activities:

- A Workshop;
- An Online Survey; and
- One-to-one discussions.

1.6.1 Workshop

The stakeholder workshop was held on the 18th May at St. Helens Town Hall. The session aimed to discuss the deliverability and viability of road and rail-linked logistics at the site and further develop the options proposed by the project team for development at the Parkside site. Specifically, discussion was focussed on the following:

- Planning policy context
- Market supply and demand
- · Rail access issues and layout
- Road access issues and layout
- Public transport / active travel

The workshop was attended by a total of 27 stakeholders. This included public sector representatives from St. Helens, Warrington and Wigan Councils, Highway England, Liverpool Local Economic Partnership and Mersey Travel. A wide range of private sector stakeholders were also in attendance including logistics companies, independent consultants, CILT representatives and six attendees from the project team (AECOM and Cushman & Wakefield). Table 1.1 provides a full list of the workshop attendees. The workshop findings, including direct quotes from stakeholders are presented throughout this report.

Table 1.1 - Workshop attendees

Attendee	Organisation
Jan Lourens	St. Helens Council
Lyndsey Darwin	St. Helens Council
Melanie Hale	St. Helens Council
Mark Osborne	St. Helens Council
Fiona Soutar	St. Helens Council
Alan Kilroe	St. Helens Council
David Scrivens	Wigan Council
Kevin Hargreaves	Wigan Council
Richard Flood	Warrington Borough Council
Shaun Reynolds	Highways England
Darren Kirkman	Mersey Travel
John Whaling	Liverpool Local Economic Partnership
Alan Heaton	Eddie Stobart
Simon Ives	DB Schenker
Julian Worth	CILT Rail Freight Group
Andrew Hemmings	CILT Rail Freight Group
Jonathan Moser	Railfreight Solutions
Tom Bateson	Tarmac
Rupert Dyer	Rail Expertise Ltd
Simon Small	Arup
David Rolinson	Spawforths
Geoff Clarke	AECOM
Michael Whittaker	AECOM
Alan Houghton	AECOM
Heather Standidge	Cushman & Wakefield
Duncan Carter	AECOM
James Mayes	AECOM

1.6.2 Online Survey

An online survey was developed using an online software package called SNAP. The survey was distributed to approximately 150 stakeholders via email between 29th April & 11th May to organisations in the North West of England who are directly involved with rail freight or are involved in developing rail freight interchanges. The survey had a total of 16 respondents which equates to a response rate of around 10%. Online surveys of this nature achieve a response rate of around 5% on average. The project team managed to achieve a 10% response rate by ensuring that the stakeholder list was targeted to relevant industry contacts and by sending reminders for the survey to be completed.

Figure 1.3 illustrates the split of survey respondents. 25% of respondents are freight users, while 13% are transport operators. Developers and rail freight operating companies (FOC) accounted for 6% respectively. Additionally 50% of respondents indicated that they operate in other business activities and these included:

- Rail freight consultant
- Commercial Real Estate/Property agent
- Independent rail freight consultant
- Transport planner
- Professional Institute
- Industrial Agent

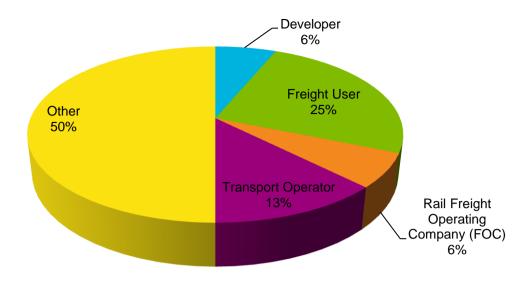


Figure 1.3 – Survey respondents

1.6.3 One-to-One Discussions

To further support the study one-to-one discussions were conducted with key stakeholders. This enabled detailed views to be gained in relation to the feasibility of Parkside as a logistics and rail freight interchange.

Table 1.2 outlines the stakeholders we have consulted with. Findings from the discussions are presented throughout the report.

Table 1.2 – One-to-one discussions completed

Rail Freight Operators	Other Stakeholders
DB Schenker	Russells Group
GB Rail Freight	DHL
Europorte	Tarmac
Rail Freight Group	Kilbride Rail
Freightliner	Peel Ports

1.7 Competing sites

There are a number of competing rail freight interchange sites. It is important these are considered when assessing the feasibility of a rail-linked logistics development at the Parkside. As such a comparison of the sites that could compete with Parkside will be conducted. Table 1.3 outlines identified sites in the wider catchment area for comparison.

Table 1.3 - Other sites (existing, proposed, under construction) in the wider catchment area

Site	Status	County Name and Region	
Ditton	Existing	Cheshire, North West	
Knowsley	Being refurbished	Merseyside, North West	
Seaforth	Proposed	Merseyside	
Port Warrington	Proposed	Cheshire	
Port Cheshire (EP)	Proposed	Cheshire	
Four Ashes	Proposed	Staffordshire	
Port Salford	Under construction	Greater Manchester	
Garston	Existing	Merseyside	
Trafford Park	Existing	Greater Manchester	

These sites will be compared to Parkside on aspects such as road connectivity and rail connectivity in Section 3.8.3. This will allow an understanding of the main competitors to the potential development of an SRFI at Parkside in terms of freight movements and warehouse tenants. Figure 1.4 shows the locations of the competing sites in relation to the Parkside site.

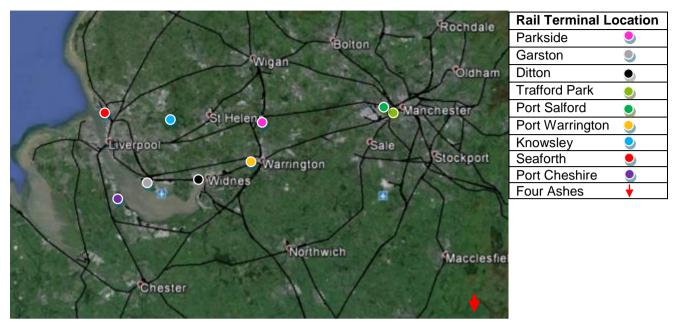


Figure 1.4 - Competing Rail Freight Terminal Locations

Transport and Planning Policy Assessment

02

2. Transport and Planning Policy Assessment

2.1 Introduction

This section provides an assessment of relevant planning policy at a European, national, regional and local level. This assessment aims to inform St. Helens Council's emerging Local Plan with regards to the potential allocation of a logistics and rail freight interchange at the Parkside site.

Key research papers that are relevant to the study have also been included in this section. Additionally due to the relevance of rail freight to the study a definition of a Rail Freight Interchange compared with a SRFI is outlined (see Section 2.1.1 for definitions).

2.2 European Policy

The White Paper 2011: "Roadmap to a Single Transport Area – Towards a competitive and resource efficient transport system", provides the European policy context.

This document sets out the vision for transport in Europe over the next 40 years. The Commission sets out the following key goals to be achieved by 2050.

- Halve the use of 'conventionally-fuelled' vehicles in urban transport by 2030; phase them out in cities by 2050.
- Achieve essentially CO²-free city logistics in major urban centres by 2030.
- 30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, increasing to more than 50% by 2050. This should be facilitated by efficient and green freight corridors and appropriate infrastructure developments.
- Ensure that all core seaports are sufficiently connected to rail freight and, where possible, inland waterway systems.
- Achieve a 60% overall reduction of transport emissions by the middle of the twenty first century.

Whilst not all related directly to rail freight, there is a clear focus on rail freight as a key contributor to progress towards sustainable freight transport in Europe.

During the development of this report the referendum was held with the decision to leave the EU. It is much too early to factor in any possible changes in policy. But it is likely that any UK Government will continue to work towards more sustainable transport, so the sentiment of this White Paper is still relevant.

2.3 National Policy

At a national level the main policy documents of relevance are the **National Policy Statement for National Networks (2015)** and the **National Policy Framework (2012)**.

2.3.1 National Policy Statement for National Networks (2015)

The National Policy Statement for National Networks (NPS) sets out Government policies for nationally significant rail and road infrastructure projects for England. It also provides planning guidance for promoters of nationally significant infrastructure projects on the road and rail networks, and the basis for the examination by the Examining Authority and decisions by the Secretary of State.

The NPS recognizes that railways are a vital part of the UK's transport infrastructure. Specific to freight and in the context of the Government's vision for the transport system as a driver of economic growth and social development, it states the railway network must:

"provide for the transport of freight across the country, and to and from ports, in order to help meet environmental goals and improve quality of life"

Strategic Rail Freight Interchanges are strongly supported with the following stated as the main drivers of demand:

• The changing needs of the logistics sector;

- · Rail freight growth;
- Environmental: and
- UK economy, national and local benefits jobs and growth.

The NPS strongly supports the need for an expanded network of SRFIs in the UK. It also recognises the importance that SRFIs are located near the business markets they will serve such as major urban centres, or groups of centres and are linked to key supply chain routes. The NPS suggests that SRFI capacity needs to be provided at a wide range of locations, in order to provide the flexibility needed to match the changing demands of the market.

Nationally Significant Infrastructure Project / Strategic Rail Freight Interchange Definitions

This section outlines the definition of a Nationally Significant Infrastructure Project / Strategic Rail Freight Interchange.

The **National Planning Statement (NPS) for National Networks** outlines that the following criteria should be met for a prospective site to be deemed 'Nationally Significant':

- Be at least 60ha in area;
- Be capable of handling goods from more than one consignor and to more than one consignee;
- Be capable of handling at least four goods trains per day; and
- Include warehouses to which goods can be delivered from the railway network either directly or by means of another form of transport.

A Strategic Rail Freight Interchange is a Rail Freight Interchange that is considered to be strategic due to the level of its operation. In order for a Rail Freight Interchange to qualify as 'strategic' it needs to meet certain criteria.

The criteria taken from the National Planning Statement (NPS) for National Networks are as follows:

- Can handle four or more trains per day
- Can handle 775m trains without splitting
- Substantial element of buildings on site to be rail connected / rail accessible with a substantial element connected from the outset
- Is connected to a railway line with at least W8 gauge rating
- Appropriately located relative to markets that they will serve and to road / rail networks and access to strategic Rail Freight Network
- Where possible be able to accommodate an increased number of trains

An independent body known as the Evidencing Authority is responsible for conducting an assessment of NSIP planning applications against the necessary requirements outlined in the National Policy Statement for National Networks (2015).

The Evidencing Authority, an independent Inspector or panel of Inspectors based on the evidence presented in the planning application makes a decision as to whether they feel planning permission should be granted or denied. It is then up to the Secretary of State to consider the assessment put forward by the Evidencing Authority and makes a final decision on the application.

Therefore if a development does not directly meet the Nationally Significant Infrastructure Project (NSIP) criteria, but is considered to be nationally significant, there is a power in the Planning Act for the Secretary of State, on application, to direct that a development should be treated as a nationally significant infrastructure project. The Secretary of State used this power in its decision to approve planning consent for the East Midlands Gateway Rail Freight Interchange (EMGRFI). The next section explores this decision in more detail outlining the lessons that can be learnt.

The East Midlands Gateway Rail Freight Interchange (EMGRFI) Planning Application

The East Midlands Gateway Rail Freight Interchange (EMGRFI) site is located north of East Midlands Airport in Leicestershire with good accessibility to the road (M1) and rail networks. The site is being promoted and developed by Roxhill (Kegworth) Limited.

The Examining Authority recommended that development consent should not be granted on grounds of non-compliance with the NPSNN. However consent for the development was provided on the 12th January 2016 against the recommendation of the Examining Authority. Patrick McLoughlin (Secretary of State) was not personally involved in the decision because of his potential interest, since his constituency is near the EMGRFI site. The Minister of State for Transport, Robert Goodwill was responsible for the decision instead.

The main reasons for non-compliance stated by the Examining Authority and the Secretary of State's reason for overruling the decision are outlined in Table 2.1.

Table 2.1 – Summary of key points from the EMGRFI Secretary of State's decision letter

	able 2.1 – Summary of key points from the EMGRFI	
#	Examining Authority's reasoning for non- compliance	Secretary of State's reasoning for overruling
1	The SRFI would not be able to accommodate rail activities "from the outset" (paragraph 4.83 of the NPSNN) or be capable of providing "for a number of rail connected or rail accessible buildings for initial take up" (paragraph 4.88 of the NPSNN).	Appreciates that the construction of warehousing and the construction of a new railway will involve different timescales and considers it entirely reasonable that a commercial undertaking should seek to generate income from the warehousing facilities before the
	These requirements were considered not to be met because a number of warehousing units would be constructed at the outset of the development programme, but would not be rail accessible until the rail link was constructed, which would take 3 years	railway becomes operational. The Secretary of State considers that the interpretation of these NPSNN requirements must allow for the realities of constructing and funding major projects such as this.
2	No warehouses will be directly connected to the railway. NSPCC guidance states that "it is not essential for all buildings on the site to be rail connected from the outset, but a significant element should be".	Felt this was a narrow interpretation of the requirement and was happy that the warehouses were "rail accessible" or "rail served" using road tractors.
	Because none of the proposed warehousing would be directly rail-connected the proposal failed to meet this requirement, both at the outset and when the development was fully completed	
3	The proposals should include "rail infrastructure to allow more extensive rail connection within the site in the longer term". Application does not consider extension of rail connections above that authorised by the order	Felt that the capacity is large enough to allow sufficient rail freight volumes to and from the site without the need for expansion (up to 1800 road movements per day). This is considered to be a significant worthwhile contribution to modal transfer which is a key objective of the NSPNN policies for SRFIs.
4	Proposal does not meet the requirement of paragraph 4.88 of the NPSNN that "the initial stages of the development must provide an operational rail network connection and areas for intermodal handling and container storage".	The Secretary of State recognises that on a narrow interpretation of the phrase "the initial stages of development" this part of paragraph 4.88 of the NPSNN would not be satisfied.
		However, for the same reasons given in #1 it is felt that the rail network connection, the area for intermodal handling and the container storage would be provided as early as reasonably practicable in the carrying out of this development
5	Feels there is a risk that a significant part of the development could remain road-based as the proposal permits the occupation of nearly 47% of the proposed total volume of warehousing before the rail connection was operational.	Feels that the requirement for the rail freight terminal to be operational before the occupation of more than 260,000m² of rail served warehousing gives sufficient assurance that the rail facilities will be delivered as soon as is reasonably practicable in the programme for this development.

It is recognised that there is no certainty that the rail facilities will be used to their fullest extent. However the Secretary of State is reassured that the strong and growing demand for rail freight facilities means that there are reasonable prospects that as this SRFI is developed it will fulfil its potential for contributing to modal transfer in the freight sector, which is the clear purpose of this application.

The implications of the decision to overrule the Evidencing Authority (as outlined in Table 2.1) are important to consider when developing the options for a Logistics and Rail Freight Interchange at Parkside. However upon consultation with industry stakeholders at a workshop the decision was not seen as negative.

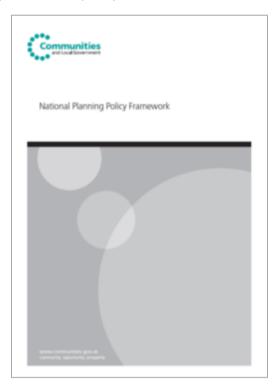
"The decision to overturn the evidencing authority's decision is not a negative one – There was such a strong need for an SRFI in the area that the Secretary of State was prepared to give slack to the developer"

CILT Rail Freight Group Representative

The EMGRFI will not be able to accommodate rail activities "from the outset" however the Secretary of State overlooked this requirement. Whilst this represents an opportunity for the developer to generate revenue to finance the rail connection in a latter phase, the risks of not installing the rail connection outweigh the opportunities of this approach.

If rail is not installed from the outset then companies will be required to develop road based logistics solutions to meet their needs. Trying to influence them to switch to rail freight at a later date is challenging due to their financial investment in the road based solution. Additionally, tenants that aren't interested in using rail freight may take up prime warehouse space that could be used by tenants that would like to take advantage of a rail connection.

"There is an overwhelming logic to start with what you are to end up with. Therefore a rail connection should go in from the outset"


Private Sector Rail Freight Expert

"Constructing a rail connection during the last stage of the development is the worst time to do it. This is because tenants have had to develop a road based solution and convincing them to change and use rail freight is difficult."

Private Sector Rail Freight Expert

Initially the options should aim to meet all the NSIP requirements. However the leniency shown by the Secretary of State means that if the viability of a rail interchange at the site is threatened by the requirements or some requirements and these cannot be met, then NSIP status could still be achievable due to the strategic need for rail freight interchanges across the UK.

2.3.2 National Planning Policy Framework (2012)

Chapter 4 (Promoting sustainable development) of the National **Planning Policy Framework** recognises that developments with sustainable credentials in relation to reductions in greenhouses gases and congestion should be encouraged:

"Encouragement should be given to solutions which support reductions in greenhouse gas emissions and reduce congestion. In preparing Local Plans, local planning authorities should therefore support a pattern of development which, where reasonable to do so, facilitates the use of sustainable modes of transport."

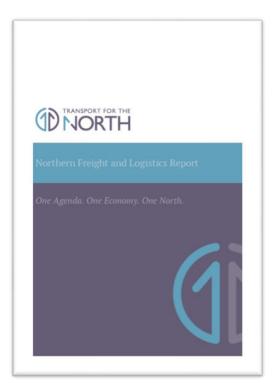
Chapter 4 also specifically supports the development of rail freight terminals to help achieve sustainable development:

"Local authorities should work with neighbouring authorities and transport providers to develop strategies for the provision of viable infrastructure necessary to support sustainable development, including large scale facilities such as **rail freight interchanges**, roadside facilities for motorists or transport investment necessary to support strategies for the growth of ports, airports or other major generators of travel demand in their areas."

It does however recognise that developments generating a significant amount of traffic movements should be supported by a Transport Statement or Transport Assessment taking account of whether:

- The opportunities for sustainable transport modes have been taken up depending on the nature and location of the site, to reduce the need for major transport infrastructure;
- Safe and suitable access to the site can be achieved for all people; and
- Improvements can be undertaken within the transport network that cost effectively limits the significant impacts of the development.

Additionally any future Local Plan policy relating to the Parkside site must pass the test of soundness outlined in the **National Planning Policy Framework.** In order to be considered 'sound' under examination from an independent inspector the Plan should be:


- Positively prepared the plan should be prepared based on a strategy which seeks to meet
 objectively assessed development and infrastructure requirements, including unmet requirements
 from neighbouring authorities where it is reasonable to do so and consistent with achieving
 sustainable development;
- **Justified** the plan should be the most appropriate strategy, when considered against the reasonable alternatives, based on proportionate evidence;
- **Effective** the plan should be deliverable over its period and based on effective joint working on cross-boundary strategic priorities; and

• **Consistent with national policy** – the plan should enable the delivery of sustainable development in accordance with the policies in the Framework.

2.4 Regional

This section provides a more focused policy review at a sub-regional level focusing primarily on the Liverpool City Region.

- 2.4.1 Transport for the North Northern Freight and Logistics Strategy Report September 2016 The strategy has been designed to:
 - Reduce the cost of freight transport to both users and non-users (for example, reducing the environmental impacts of freight and logistics movements);
 - · Expand market share in the logistics sector; and
 - Attract inward private sector investment to the Northern Powerhouse.

The strategy has a strong focus on the increased use of rail freight through improved availability of train paths and development of rail freight interchanges to help achieve the goals of the strategy. The core of the strategy is as follows:

- The development of 50 hectares of rail and/or water connected Multimodal Distribution Parks (MDPs) per year, to be located at the edge of urban centres
- Rail network upgrades to allow 20% longer freight trains to operate on a six day week basis, which will
 reduce unit costs through improved asset productivity.
- The promotion of short-sea shipping (particularly for unitised freight) to bring cargo directly to Northern ports
- Complementary land-side access improvements to ports to reduce local road congestion, most importantly along the route of the M62/M60 north of Manchester and into Hull and Liverpool.
- Raising the quality of the environment to further promote the Northern economy

The strategy recognises that the lack of capacity on the existing rail network in the North is threat to growth in rail freight traffic in the region. Additional capacity is therefore required along both north-south and east-west routes to help achieve the rail/port centric distribution outlined in the strategy.

The strategy states that incremental expansion in capacity will be required more or less immediately to provide the private sector with the confidence to invest in additional equipment and terminals so that forecast growth can be reached in a progressive and sustainable manner.

With regard to potential rail freight interchanges in the North West, Parkside is specifically recognised by the strategy along with 9 other sites. See Table 2.2 for a full list of the potential sites in the North West.

Table 2.2- Potential UK Multimodal Distribution Parks

Site	County Name	Status (spring 2016)
Ditton (3MG)	Cheshire	Existing*
Kingsway	Greater Manchester	Not yet rail-linked
Knowsley	Merseyside	Being re-developed
Parkside	Merseyside	Not yet consented
Port Cheshire (EP)	Cheshire	Potential to expand
Port of Salford	Greater Manchester	Being developed
Port of Warrington	Cheshire	Not yet rail-linked
Risley	Cheshire	Not yet developed
Seaforth	Merseyside	Land being assembled
Wigan	Greater Manchester	Not yet developed

^{*} Potential to expand

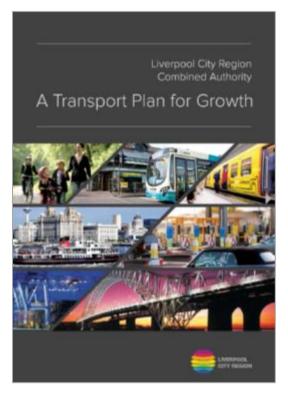
2.4.2 Liverpool City Region (LCR) Growth Deal (2014)

The Liverpool City Region Growth Deal was announced on July 7th 2014 and allocated over £232m of resources to the area - with £35m of new funding confirmed for 2015/16 and £153.2m from 2016/17 to 2021. The Growth Deal focusses on transport and skills projects which will support the city region's ambitions to create a freight and logistics hub serving an expanded Port of Liverpool.

The Liverpool City Region Growth Deal focuses on four priority areas:

- Creating a Liverpool City Region Freight and Logistics Hub
- Liverpool City Centre
- Low Carbon Liverpool City Region
- Skills and business support to enable growth

Based on evidence and in the context of the City Region's considerable asset base, the Growth Deal identifies five transformational strategic projects:


- Liverpool City Centre as a global brand, visitor and business destination, a centre for commercial and business growth and a location for a growing cluster of knowledge assets
- The Liverpool City Region Freight and Logistics Hub that builds on our natural assets and the changing nature of the international and national logistics industry
- LCR2Energy which will facilitate the transition of the City Region's energy requirements to a more low carbon supply

- Access to the Port of Liverpool
- A City Region Capital Investment Fund, to act as an intermediary mechanism between the Local Growth Fund nationally and investments at the local level

The programme of projects aimed at creating a **Liverpool City Region Freight and Logistics Hub** builds on the investment in Liverpool2 and the £600m investment in the Mersey Gateway. Both these projects complement the Atlantic Gateway initiative and the aspirations of the Cheshire and Warrington, and Greater Manchester LEPs for job creation resulting from expanding freight capacity.

2.4.3 A Transport Plan for Growth

A Transport Plan for Growth was developed by Liverpool City Region Combined Authority and was released in 2015. It outlines five strategic projects. One of the five strategic projects at the heart of the Transport Plan for Growth is to create a freight and logistics hub. This project aims to put the City Region in the best place to respond to changes in the UK and international logistics market.

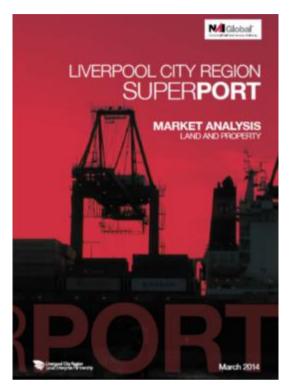
Three priorities are identified as part of the plan:

- Growth
- Low carbon
- Access to opportunity

Wider strategic priorities are also outlined with **Freight and Logistics** considered the most important. The other wider strategic priorities are:

- Housing and Land-use Planning
- Economic Development and Regeneration
- Employment and Skills
- Health and Wellbeing
- Carbon Reduction and Air Quality
- Connecting Communities
- Visitor Economy

A Transport Plan for Growth aligns our transport priorities with these wider strategic priorities, facilitating effective cross-sector collaboration and shared investment (Figure 2.1).


Figure 2.1 – Alignment of transport priorities with the wider strategic priorities

The plan recognises that improving connectivity and capacity for freight on our road and rail networks opens up access to the Port from across the whole of the UK, and is therefore fundamental to supporting the economic prosperity of the Region. There is also a strong emphasis on logistics and freight as a means of supporting and enhancing the economic output of the region.

Delivering the SUPERPORT Freight and Logistics Hub (developments, sites and premises) is designated as a shared priority. The Parkside site along with Knowsley Industrial Park and 3MG in Halton are recognised as key to achieving the SUPERPORT Hub.

2.4.4 Liverpool SUPERPORT Market Analysis Land and Property Report (2014)

The market analysis for land and property in relation to the **Liverpool SUPERPORT** outlines a minimum land supply of 634 hectares over the next 20 years, split across logistics (418ha) and manufacturing use (216ha). Factoring in a 25% headroom in supply, to allow for client choice etc. to enable the market to function properly this would inflate the totals required to 793 hectares for logistics (522ha) and manufacturing use (271ha) overall.

As part of the market analysis for land and property a number of current and potential sites have been identified that are capable of addressing the specific need for logistics facilities in the Liverpool City Region.A SRFI at the Parkside site is identified as a key project if the SUPERPORT is to be successfully delivered.

2.4.5 Liverpool City Region Long Term Rail Strategy (2014)

Developed by Merseytravel in collaboration with Network Rail, the LCR Long Term Rail Strategy is a vital and timely vision of the role that an expanded rail offer can play in facilitating the proposed accelerated economic growth of the LCR.

• Improving National Passenger and Freight Connections (CP5 – CP7)

In terms of freight, the aspirations of the SuperPort masterplan to more than double the rail freight handling capacity of the city region is a vital scheme for the economic future of the area, but is likely to result in conflict with increased passenger services.

2.5 Local Policy

The St. Helens Local Plan Core Strategy (2012) and the St. Helens Unitary Development Plan Saved Polices (2014 version) are Development Plan Documents for St. Helens. Together with the Merseyside and Halton Joint Waste Local Plan (2013) they form the Development Plan for St. Helens, which sets out the spatial planning policy framework for the Borough of St. Helens.

The St. Helens Local Plan Core Strategy was published in October 2012 and was the culmination of various consultations and background papers spanning 7 years from 2005 - 2012. It takes account of, and will support a number of local strategies. However the St.Helens Plan 2011-2014 and City Growth Strategy 2008-2018 are overarching.

The Core Strategy provides a strategic level plan for how the Borough will develop to 2027. The document outlines the current situation in St. Helens (as it was at adoption in 2012) and identifies the key issues, problems and challenges. The Strategy then outlines the Vision for St. Helens by 2027, and identifies what detailed objectives need to be met to achieve the overall Vision.

The Parkside site and immediately adjacent land is identified as a strategic location with potential to facilitate the development of an SRFI. It is stated that the Council believe a deliverable and viable SRFI can be developed on the western side of the M6 with an operational area of approximately 85 hectares. Therefore the Council will support the development of the site identified to the west of the M6 as a SRFI, provided that it meets national Green Belt planning policy tests, including the demonstration of very special circumstances along with a set of additional criteria such as:

- Direct access to the rail network is achieved and conforms with rail industry strategies and capacity utilization;
- The ability of the local road network to accommodate traffic generated by the development without unacceptable impact on residential amenity and traffic flows; and
- All uses within the site should have the primary purpose of facilitating the movement of freight by rail.
 Any ancillary uses to this main use must be directly related to the movement of freight by rail and must demonstrate clearly why they need to be located on the site.

Parkside Policy CAS3.2⁶

The site of the former Parkside Colliery and immediately adjacent land is identified as a strategic location which has the potential to facilitate the transfer of freight between road and rail. The Council supports in principle the delivery of a SRFI in this location. The Council believes a deliverable and viable SRFI can be developed on the western side of the M6 with an operational area of approximately 85 hectares.

The Council will support the development of the site identified to the west of the M6 as a SRFI, provided that each of the following criteria are met:

- 1. It meets national Green Belt planning policy tests, including the demonstration of very special circumstances; 66 St.Helens Local Development Framework; St.Helens Local Plan Core Strategy
- 2. Direct access to the site from the M6 for HGVs can be obtained avoiding use of Traffic Sensitive Routes identified in the Network Management Plan. Adverse impacts on the Strategic Road Network will be mitigated;
- 3. Direct access to the rail network is achieved and conforms with rail industry strategies and capacity utilisation;
- 4. The ability of the local road network to accommodate traffic generated by the development without unacceptable impact on residential amenity and traffic flows;
- 5. Measures are incorporated which encourage travel to/from the site using sustainable transport modes, including access by public transport, cycle and foot, in accordance with Policy CP 2. A travel plan will be essential;
- 6. That the character and amenity of the Newton High Street and Willow Park Conservation Areas are preserved or enhanced:
- 7. Significant adverse impacts from the development itself or associated road and rail access routes should be avoided and, wherever possible, alternative options which reduce or eliminate such impacts should be pursued. Where adverse impacts are unavoidable, measures to mitigate the impact should be adopted. Where adequate mitigation measures are not possible, compensatory measures should be considered and adopted if appropriate. The aim should be to minimise any adverse impact. In applying this policy, a developer should address the following land use impacts as a minimum: environment; biodiversity/ecology; heritage; archaeology; agricultural land; community; quality of life; health; air quality; light; noise; visual intrusion; buffer zones; contributions to sustainable development; waste management; energy generation by renewable means; energy efficiency; water conservation and sustainable drainage; reuse of materials; traffic and sustainable transport; and remediation of land affected by contamination or surface hazards caused by past mining activity;
- 8. All uses within the site should have the primary purpose of facilitating the movement of freight by rail. Any ancillary uses to this main use must be directly related to the movement of freight by rail and must demonstrate clearly why they need to be located on the site; 9. Impact on Green Belt and landscape character is mitigated by significant landscape and green infrastructure enhancement, including tree planting;
- 10. Provision for the positive management of existing and new environmental assets;
- 11. Special regard should be had to the desirability of preserving the Listed Buildings at Newton Park Farm, their setting or any features of special architectural or historical interest which they possess. Should a suitable SRFI scheme require the removal of the Listed Buildings then substantial public benefits will be required including the relocation of the listed structures in a rural setting within the vicinity of Newton-le-Willows and preferably within the St.Helens local authority area;
- 12. Training schemes will be put in place to increase the opportunity for the local population to obtain employment at the complex; and
- 13. All other material issues are satisfied.

It is understood, however, that for operational, viability and commercial reasons a larger area of land extending to the east of the M6 motorway may also be required to accommodate an enlarged SRFI. It is considered that any expansion to the east would cover approximately 70 hectares of additional operational land.

The Council will also support the development of land to the east of the M6 provided the above criteria are met, plus the following additional criteria:

- 14. That the area of land to the western side of the M6 is developed first; and
- 15. That the SRFI is proven to be not deliverable without the additional eastern land area. Planning permission will not be granted for any other use of the land which would prejudice its use as a rail freight interchange. Subject to a SRFI being fully developed on site, that meets the requirements listed above, the Council will consider favourably a revision to the Green Belt boundary in the Allocations DPD and Proposals Map, or subsequent revision.

34

⁶ St. Helens Local Plan Core Strategy, 2012

The purpose of the policy is as follows;

- To facilitate the transfer of freight between road and rail by making best use of Parkside's unique locational advantages in terms of road and rail infrastructure;
 - ii. The national, regional and local need for a SRFI in this location;
 - iii. To identify an appropriate scale of development;
 - iv. To outline an appropriate phased release of land;
 - v. To outline the criteria that a SRFI proposal will need to satisfy to be considered acceptable;
 - vi. To identify a trigger for the consideration of changes to the Green Belt boundary in this location.

2.6 Green Belt Implications

The Parkside Rail Freight Interchange Core Strategy evidence base Background Paper of 2010 reflects on the case for Parkside having exceptional circumstances as follows:

"The exceptional circumstances which support the release of Green Belt land in (and around) Parkside comprise the need to provide a SRFI in the North West to meet anticipated medium/long term market demand and to meet the Government's objective of developing a more sustainable distribution industry, combined with the significant benefits the development would have in terms of generating significant employment opportunities in the Borough and the wider positive impacts on the sub-regional and regional economy.

The development of Parkside as a SRFI is also supported by the RSS. The Secretary of State and the Inspector have in the past refused development for two schemes, Newton Park Farm and a Motorway Service Area at Parkside, in order to safeguard the site for an intermodal freight terminal. 12.5.3 The Government's commitment to tackling climate change, and especially reducing CO2 emissions, is unequivocal. The modal shift of freight movement from road to rail is a clear and urgent policy objective, the removal of Parkside west from the Green Belt in order to enable the development of a SRFI as a whole would result in a clear balance of advantage, notwithstanding some adverse effects in the immediate locality. The development of a SRFI at Parkside would bring about numerous positive benefits and provides a key opportunity to meet national and regional transport, environmental and economic aspirations whist delivering both short and long term benefits to St. Helens and the wider sub-region. Parkside has locational advantages in terms of access to the main rail network and the strategic road network and would be ideally placed to become an important logistics hub serving the North West region to meet forecast demand from distributors serving an active economic region. The harm to the Green Belt by reason of inappropriateness and any other harm is outweighed by other considerations and accordingly exceptional circumstances can be demonstrated to release Green Belt land at Parkside."

This study has reviewed the case in support of an SRFI proposal at Parkside. In doing so, the strength of our findings provides the ongoing case for Exceptional Circumstances with regard to the site, and with minor amendments we believe these circumstances still apply.

2.7 Emerging Local Plan

As is shown in the analysis presented in this Chapter the development of new rail-linked logistics development is strongly supported at both a national, regional and sub-regional policy level. The Parkside site itself is also named specifically in the **Transport for the North Freight Strategy** and **Liverpool SUPERPORT Market Analysis**, **Land and Property Report (2014)** as a site suitable for consideration of a logistics and rail freight interchange.

Additionally as part of the Liverpool City Region 'A Transport Plan for Growth' delivering the SUPERPORT Freight and Logistics Hub (developments, sites and premises) is designated as a shared priority. The Parkside site along with Knowsley Industrial Park and 3MG in Halton are recognised as key to achieving the SUPERPORT Hub.

2.8 Key Research Papers

2.8.1 Mode Shift Benefit Values – Technical Report⁷ and Refresh⁸

In deciding whether to send freight by road an operator will compare the additional costs he expects to incur with the additional benefits he expects to obtain. The additional costs faced by the operator, or 'marginal private costs', will include wage costs, fuel costs, oil, tyres and any other mileage related repair costs, including any taxes (such as fuel duty) incurred.

However the operator will also impose costs on other groups in society, which it will not factor into its decision to transport freight by road. These are referred to as 'marginal external costs'. In this review the same categories of external cost that were considered as part of the previous review of the values, reported in SRA (2003) have been used:

- Congestion costs
- · Accidents costs
- Noise costs
- Climate change costs
- Air pollution costs
- Infrastructure costs
- Other costs

In summary, the net social benefit of transferring freight from road to rail or water is made up of the net benefit of reducing the amount of freight traffic on road and the net cost of increasing the amount of freight traffic on other modes. This assessment has been used to assess the net benefits of having a rail connection for each option.

2.8.2 Double-Deck Trailers: A Cost-Benefit Model Estimating Environmental And Financial Savings⁹

Double-deck trailers could be a key contributor towards the UK's commitment to reducing CO2 emissions towards 2020. A double-deck trailer greatly increases carrying capacity with current vehicle size and weight limits. Double-deck trailers are particularly well suited to retail distribution. This paper introduces a model that calculates the financial and environmental impact of deploying double-deck trailers on a specific set of routes. This paper is of particular relevance to rail freight as double-deck trailers are a strong competitor to rail freight due to the additional carrying capacity of these vehicles.

⁷ Department for Transport, 2009 - Mode Shift Benefit Values

⁸ Department for Transport, 2015 - Mode Shift Benefit Values: Refresh

⁹ Double-Deck Trailers: A Cost-Benefit Model Estimating Environmental And Financial Savings - Logistics Research Centre, Heriot-Watt University

Market Demand and Supply Assessment

03

3. Market Demand and Supply Assessment

3.1 Introduction

As a site adjacent to the M6 and with the benefit of significant scale, the Parkside site clearly lends itself to larger scale logistics and distribution uses. This section of the Market Demand and Supply Assessment considers the likely potential and scale of demand for such uses at the Parkside site, including the attractiveness of rail facilitated property, relative to broader market trends and competing locations. It has been informed by Cushman & Wakefield's substantial industrial market research and through consultations with both our in-house and other external North West industrial market agents together with AECOM's extensive knowledge of the rail freight sector.

3.2 National and Regional Market Overview

Global and domestic economic concerns including weak export numbers and the uncertainty surrounding the EU referendum impacted upon the national industrial sector in 2015. As a result, Cushman & Wakefield's market research indicates that industrial enquiries plateaued as a result of occupier caution in 2015 (5,806 enquiries across the year) and take up eased to 29.7m sq. ft., 15% lower than the 2014 figures. These economic factors are anticipated to continue to have a dampening effect on take up in the first half of 2016, and there is uncertainty relating to the potential for improvement in the second half of the year due to the result of the EU referendum.

The growth of online spending has led to e-commerce becoming the most influential sector on the UK big box industrial and logistics market, with retail accounting for 38% of total take up in 2015, the highest level since 2010. The UK has the most mature online retail market in Europe with 16% of total retail spend anticipated to be spent online by 2019. As online consumers have become increasingly demanding, logistics operators have had to streamline and optimize their supply chains to ensure next day deliveries and 'click and collect' deliveries can be made. This increasing need to move vast volumes of stock at a fast pace has resulted in requirements for progressively larger distribution centers built to high specifications in most suitable locations near to consumers, including increased interest in multi-modal facilities such as DIRFT (Daventry International Rail Freight Terminal) enabling heavier goods to be transported over longer distances.

These advances have driven a key trend within the large scale industrial and logistics market – a 'flight to quality' for occupiers in terms of both premises and location, resulting in the highest Grade A take-up on record in 2015 (47% of the total).

A lack of Grade A logistics space in prime locations had led to the 'big box' occupiers favouring build-to-suit solutions, although the volume of Grade A floorspace taken up via such deals fell to around half in the second half of 2015 (from c. 76% in H1) as more speculative development entered the market.

Cushman & Wakefield currently estimate there to be in the order of 10.3m sq. ft. of speculative industrial floorspace over 50,000 sq. ft. under construction in the UK and a further 3.1m sq. ft. proposed. Developers are targeting the highly sought after mid-size market, with 100,000 to 250,000 sq. ft. schemes accounting for 49% of developments completed, under construction or proposed. Whilst much of this development remains centered on the highly accessible M1/M6/M25/M62 motorway corridors (for example, Omega in Warrington), speculative logistics development is now starting to spread along other major trunk routes as illustrated in Figure 3.1.

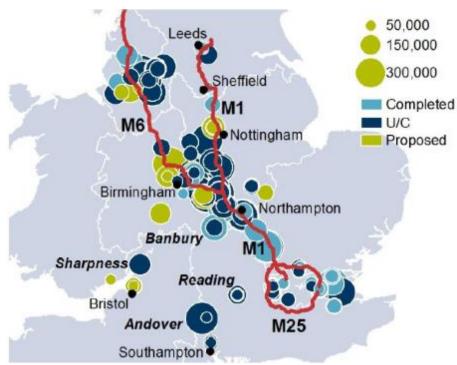


Figure 3.1- Speculative Development Since Q1 2014 (Million sq. ft.) Source: Cushman & Wakefield Research, ERSI

The UK industrial market is currently the most expensive in Europe, however until recently the dearth of new development and competition over available space has meant that prime rents have increased by 12% since 2011. Cushman & Wakefield forecast that despite an increase in speculative development, a lack of available land in good locations will continue to fuel rent rises of c.10% over the next five years across all key centres.

Within the North West regional market, industrial take up totaled over 5 million sq. ft. in 2015, similar to the previous year but falling significantly in the second half of 2015. As per the national picture, Grade availability in the North West increased by 80% on the previous year to 783,000 sq. ft. at the end of 2015. Speculative development started off at a slower rate than in other regions, and the resulting low availability coupled with a highly active market led to some of the strongest prime rental growth in the UK. However, this also contributed to the slow rate of take-up in the second half of 2015 as occupiers become reluctant to pay such rental levels. Despite this, take up is expected to increase in response to the Liverpool 2 port forecast to open in H2 2016 and consequently rents are expected to continue to rise across the region.

3.3 Drivers of Demand

Regardless of economic trends, the demand for industrial and warehousing floorspace continues to be driven by a series of multiple generic and business specific factors. The primary generic drivers for almost all occupiers are as follows:

- Location there is a need to be in the broad location that best suits business requirements, in terms of access to customers (internal and external), supply chain and employees. In a higher value added economy, evidenced through the emergence of advanced manufacturing (for example), access to higher skills is an increasingly important driver but workers anticipate greater travel to work distances as a consequence of higher pay levels. However, businesses requiring a low skill base will locate where there is a plentiful supply of cheap labour. Therefore, choice of location will be driven by accessibility which, depending on the nature of the business, could be either excellent strategic highways connections or high level public transport access, or a combination of the two.
- Availability of space ultimately most occupiers are opportunistic and will go where the right space is available at the right time and at an acceptable cost. An occupier's first choice is often within their existing location and then places nearby or with similar attributes which satisfy staff need. Decisions tend to be short term e.g. responding to a new contract, and as such there is a need for a supply of 'oven ready' sites and premises of a variety of types and locations to enable areas to serve the needs of both existing and incoming businesses.

- Financial incentives and public sector intervention in the past, occupiers have been driven to particular locations by the public sector, both through the planning system and, more frequently, through the availability of grants and incentives. However, public sector spending cuts mean that this is very unlikely to be such a significant driver moving forward, and the public sector's role will be more of an enabler, in particular through the planning system.
- Sustainability In terms of occupier requirements going forward, increasing importance will also be
 placed upon build standards and environmental performance as companies seek to reduce running
 costs and meet corporate and social responsibilities.

3.4 Document Review - Land Demand Indicators

A number of key documents consider the future demand requirement for employment land associated with the rail and sea freight sectors. These have particular relevance to Parkside and could help inform the implications for the demand for property at the site:

- SUPERPORT Land and Property Market Analysis Report (2014) The demand requirement for land in the manufacturing, distribution and transport sectors in the Liverpool City Region is estimated at 800 hectares. At the time of the report in 2014, the supply of high quality, large scale sites such as at 3MG and Omega South were identified as sufficient in the short term, however up to a 20 year period an additional 400 hectares (minimum) of large high quality sites suitable for logistics clusters would be required to maximise the opportunity created by Superport and prevent demand from going elsewhere. Just two years on from this report and Omega is now almost at capacity suggesting the additional requirement for large scale good quality sites may need to be facilitated in the shorter rather than longer term.
- Transport for the North: Freight & Logistics Strategy: Concludes that the development of 50 hectares per annum of rail and/or water connected Multimodal Distribution Parks (MDPs) will be required to 2033 (equating to a total of 850 hectares over this period) in order to reduce the cost of freight transport, expand market share in the logistics sector and attract private inward investment to the Northern Powerhouse. Development of MDPs will be focused at the edge of urban centres and along east-west corridors to maximise transport efficiencies. In the North the most obvious opportunities are from the Mersey along the Manchester Ship Canal at sites such as Port Warrington, Port Salford and Runcorn.
- St Helens Employment Land Needs Study Identifies an overall borough-wide employment land requirement of 177-214 hectares to 2037. Opportunities for larger operations, particularly large scale logistics businesses, were found to be very limited despite an anticipated strong shift to B8 warehousing requirements to 2037. As such, the need for Storage and Distribution (B8) employment types accounts for 100-130 hectares of the total employment land requirement, with the next largest need being 50-65 hectares for General industrial (B2) uses. The locations of the additional land should build upon the existing employment nodes in St Helens exploiting its key location advantage.

Each of these documents indicates an anticipated demand for additional employment land across St Helens and the wider sub-region for larger scale industrial and distribution development associated with improvements and growth to the rail, sea and road freight sectors. The Parkside site is well placed to respond to this anticipated growth in demand.

3.5 Market View of the Parkside Site

Consultations with Cushman & Wakefield's in-house agency team, together with other external Industrial Market Agents active within the North West regional market has revealed the following key messages in respect of the local market and potential of the Parkside site for distribution use generally:

- Improving market sentiment There is an improving narrative behind the North West and its regional economy. Positive news stories around the Northern Powerhouse, Liverpool2, Jaguar Land Rover and Manchester Airport have all served to enhance wider market perceptions of the region, particularly around Manchester and Liverpool.
- Short term speculative supply A total of 3.6 million sq. ft. of speculative development has come forward in the North West since 2014, with more announcements expected in 2016. For example, development is currently happening on the ground at:

- Omega, Warrington Limited availability with just the last couple of plots remaining. London Metric are currently speculatively building a 350,000 sq. ft. cross-dock facility. The Parkside SRFI site is currently not considered to be as attractive a location as Omega owing to visibility and immediate motorway access.
- Logistics North, Bolton Strategic location on the M61 near Bolton with land available.
 Speculative development is currently underway on three units of 175,000, 275,000 and 350,000 sq. ft. Parkside is currently not considered to be as good a site, but could be of equal attractiveness if road linkages could be improved.
- Kingsway, Rochdale 250,000 sq. ft. speculative shed is currently under construction. Parkside's strategic location adjacent to the M6 makes it a more attractive market location than Kingsway near the M62.
- Haydock Industrial Estate, St Helens Established industrial location situated at the junction of the East Lancs Road with the M6 at Junction 23. The estate is performing well and counts Sainsbury's (350,000 sq. ft.) and Cost-Co as occupiers. The Haydock Cross site has just been purchased and is considered to be of equal attractiveness to the Parkside site.
- South Lancashire Industrial Estate, Ashton-in-Makerfield, Wigan 3 large sheds of 100,000 to 350,000 sq. ft. are under speculative construction.
- 3MG, Mersey Multi-modal Gateway Situated in Ditton, Widnes with access to the West Coast Main Line. The site is predominantly owned by Stobart Group and has outline planning consent for 2.7 million sq. ft. of new buildings, but development is not progressing.
- Port Salford Peel owned site with planning permission for 1.6 million sq. ft. of distribution warehousing
- Port Bridgewater, Ellesmere Port Proposals for 1 million sq. ft.
- Constrained future supply Several of the key distribution locations identified above such as Omega, Warrington; Trafford Park, Manchester and Logistics North, Bolton are beginning to reach critical mass and there is now a recognised shortage of large scale employment sites in single ownership within the North West with the ability to be delivered within the medium to long term (post 3-5 years). Within St. Helens, the UDP Proposals Map indicates that there is no additional allocated employment land available for development along the M62 and therefore the focus is on the M6. In response, the Employment Land Study recommends that the Parkside site, land at Junction 23 of the M6, and Junction 7 of the M62 should be the key sites to secure for logistics purposes. The Parkside site is in single ownership and is capable of delivering large footprint premises on an edge of motorway location. This limited supply of truly strategic sites in the pipeline is considered to be one of the key advantages to the Parkside site.
- Attractive local labour market The Parkside site is situated within the Borough of St. Helens, but close to the border with Wigan and Warrington. Each of these local authorities is considered to have a labour market that is attractive to the industrial and distribution industry and is bourne out of the area's strategic location at the crossing points of major road and rail infrastructure. 7.7% of St Helen's working age population is engaged in transport and storage sector compared to 4.5% regionally and nationally. In Warrington the rate is 6.2% and Wigan 4.9% (Source: ONS BRES 2014). These figures indicate a strong pool of appropriately skilled labour. Further, full time earnings in St Helens average £480 per week, lower than the £492 regional average, indicating an affordable location in terms of labour.
 - Requirement to improve road access The Parkside site is situated in a good location adjacent to the M6 corridor and between Warrington and Haydock. Further, St Helens is deemed to have an attractive labour market. However, road access to the site is currently undermining its market attractiveness. Whilst only a 5 minute drive to the M6 or M62 motorway junctions, congestion is considered to be an issue on the A49/M6 link locally. In order to be the next 'Strategic Site' in the North West and to compete effectively with the likes of Omega and Logistics North, the site really requires its own direct access to the M6 or significantly improved access via the A49. However, there are significant costs to developing such significant new infrastructure.
 - Rental levels Prime industrial rental values in the North West are currently in the order of £6.50 per sq. ft. at Omega, Trafford Park, Warrington and in South Manchester. Discussions with market

agents have suggested potential values in the order of £5 per sq. ft. at Parkside based on current accessibility, increasing to £6 to £6.50 per sq. ft. with improved road access. The rail link will drive additional value but the scale of this is largely untested and therefore unknown.

- Scale of development The estimated 74 acres of developable industrial land at the Parkside site is considered by the market to have the ability to deliver up to 1.5 million sq. ft. of industrial and/or logistics space. There is considered to be good demand for big box logistics, although most of the large scale retailer and parcel delivery requirements which had been driving the market on the North West have now been met. Demand will therefore likely be from other distribution users and possibly manufacturers. The St. Helens Employment Land Needs Study supports this market sentiment indicating that B8 employment land growth is expected to be led by the large scale operators (greater than 200,000 sq. ft.). Unit sizes of 100,000 to 200,000 sq. ft. could possibly be delivered speculatively dependent upon timing of delivery, or up to 500,000 sq. ft. with a pre-let. 100,000 to 350,000 sq. ft. units are considered to be most appropriate and market facing. Smaller units of 5,000 to 20,000 sq. ft. could also be provided for local occupiers.
- The challenge of deliverability The market considers the key challenge to developing a SRFI at Parkside to be deliverability. Pro-logis specialize in large scale distribution locations and delivered over 7.8 million sq. ft. of rail connected space at DIRFT in Daventry, and yet were unable to bring forward the Parkside scheme. Langtree specialise in traditional industrial developments and may well face similar challenges to delivery at Parkside.

3.6 The Demand for Rail-Linked Property

In considering the market potential for rail linked property at Parkside, the following points are key considerations:

- Interest in rail and sea Distribution by rail and sea is high on the agenda at the moment as businesses seek to explore more cost efficient means of transportation than road, particularly for those requiring large scale or volume movements such as Jaguar Land Rover and Vauxhall. There is also increased awareness and business interest in improving environmental credentials and reducing carbon footprint to support Corporate Social Responsibility. The findings of the Liverpool City Region Stage 1 Freight Study support this trend, anticipating a modal shift towards water and rail freight transport across the City Region to 2020. It is anticipated that this will drive a demand for large warehousing (100,000 sq. ft. or more) across Merseyside with a focus towards large water and rail connected distribution parks largely around Seaforth, Widnes, Knowsley and at sites along the Manchester Ship Canal.
- Growth of rail distribution The use of rail freight nationally has grown 14% from 18.5 billion tonnes/km in 2002 to 21.1 billion tonnes/km in 2012. The ability to deliver a rail freight interchange at Parkside could be a real game changer being better than most competing sites given connections to two rail lines north-south via the West Coast Main Line and east-west via the Chat Moss Line. Despite this, there is an industry view that Parkside could work without the rail link as rail is rarely the main driver of an occupier deal.
- Impact of Liverpool2 The impending opening of the Liverpool2 port is understood to have led to speculative development along the west end of the M62, with schemes in Speke, Ashton-in-Makerfield and Warrington now under construction or proposed. Liverpool2 could be a real driver for the Parkside scheme, however the introduction of post-Panamax vessels into Liverpool is a largely untested market and the impacts are not yet known. The findings of the Liverpool SUPERPORT Land and Property Market Analysis Report (2014) supports this indicating that port located distribution centres enable businesses to bring cargo close to the end market and reduce carbon emissions by up to 60% by storing stock at the point of import. As a result, it anticipates increased demand for warehousing at ports as shippers increasingly implement the process of slow steaming (operating at less than their maximum speed) to reduce costs and adjust their environmental impact.
- Site scale and inter-connectivity The characteristics of a site which can meet financially and operationally the needs of customers, developers and operators must be of a scale that can defray the required investment to deliver a SRFI specification. The required critical scale for train operators must also match the on-site and local demand for services to Ports, and other supply / demand locations which are rail located. Having the option to secure warehousing space at a site such as

Parkside will enable connectivity between road distribution and rail distribution to be made at the lowest possible cost as enabling access from the site to long distance rail transport for the trunk haul.

- An established distribution location The co-location of other warehouses on the site and in the immediate area of Parkside (Omega, Haydock, Logistics North for example) will enable the scale of supply and demand to permit the development of intermodal train services to be offered from the site both to a range of different markets and locations, mainly for Deep-sea Ports (for Sea imports Southampton, Felixstowe, but also Teesport, Immingham) Domestic Intermodal (Scottish Central Belt, West Midlands (Daventry)), and European Intermodal Services via the Channel Tunnel.
- Opportunity for additional supply chain benefits Features such as internal private road status
 enable red diesel, road tugs, higher vehicle weight limits and linked warehousing all allow for a more
 cost effective end to end supply chain cost and for nearby warehouses a competitive cost and time
 offer which is particularly helpful to a freight sector which is typically low margin (circa 4-8 %).

It has already been noted that the future supply of large scale B8 warehousing space with good strategic accessibility and in single ownership is becoming increasingly constrained in the North West. The Parkside site as an intermodal terminal and logistics park of c.100ha would provide a significant contribution towards the 50ha per year of rail and water connected multi-modal distribution space requirement recommended in the Transport for the North – Freight and Logistics Strategy.

Further, there is an increasing interest from users and buyers of warehousing and distribution services to integrate rail freight into their transport operations owing to the potential cost and environmental savings with rail freight options sometimes being specified in procurement contracts.

As such there is a good indication that matching on site and local demand with a rail network which can serve four directions and a population of over 1 million people within a 20km radius makes the Parkside site unrivalled in the North West. However as previously noted, the scale of the additional rental (and subsequently land) value generated by the provision of rail linked facilities is largely untested in the North West. The ability to facilitate a rail connection offering W10 gauge connectivity in all four directions will help to future proof against future shifts in the rail and distribution market.

3.7 Stakeholder Views on the Parkside Site

This section outlines findings from the workshop held on 18/05/2016 and the online survey with regards to view of stakeholders on the potential Parkside Logistics and Rail Freight Interchange.

Respondents were asked via the online survey whether they thought Parkside was one of the most suitable locations for a SRFI in the North-West. The majority (69%) agreed with a small percentage (31%) of respondents disagreeing (Figure 3.2).

Respondents stated that the main advantage for Parkside is its geographical position; Parkside's location is ideal as it has good road access (close proximity to the M6, M56 and M62) and rail links (West Coast Mainline and Chat Moss Line). The site was felt to have a sufficient amount of land and the potential to become a rail connected development.

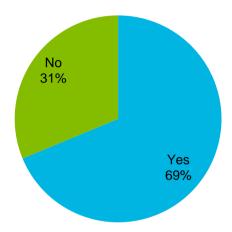


Figure 3.2 – Is Parkside one of the most suitable locations for a Strategic Rail Freight Interchange (SRFI) in the North-West?

"Parkside is probably the optimum location for a new SRFI in North West England given its proximity to main markets and the motorways. It should form part of a network of similar facilities up the West Coast Main Line."

UK Rail Freight Operator

"There is a need for rail linked sites to serve the North West, given the lack of capacity now, and the general increase in freight and logistics activity in the region. Parkside has always been a good location by all the usual metrics and if the funding and infrastructure issues can be overcome it will be as good a location as any"

Chief executive, Rail Freight Forum

"The Parkside site would be good as in intermediate stop off between London and Scotland. The site is a convenient location that minimises diversionary mileage and time."

Multi Modal Logistics Interchange Operator

It was widely regarded by stakeholders that the market could comfortably serve three trains per day from the outset. The site could then build towards 8 over the next 5 to 10 years. The consensus is that Parkside would primarily be served by the deep sea ports in the south (e.g. Felixstowe, London Gateway and Southampton) but it is also thought that the location could support services on an east-west axis to Teesside and the Humber ports, in addition to a service to Scotland and potentially a direct service through the Channel Tunnel. These links would increase the sites importance on both a national and international level with the possibility to align with global supply chain that utilise deep sea movements into these ports. This would also help to fight off competition from other proposed SRFI sites in the UK.

There were some technical issues cited by stakeholders in relation to rail access to the site. These centre around issues such as the positioning of items of infrastructure following the electrification of the Chat Moss railway line and constraints relating to line capacity. The line capacity issues are caused by the multiple crossovers required to enter the site (primarily an issue from the South and West) meaning achieving train paths could be challenging. However direct engagement with Network Rail and other key stakeholders including those at the workshop felt these issues are not insurmountable.

Evidence from stakeholder engagement also highlights the move from operators to base themselves further north away from the traditional 'Golden Triangle'. This is due to increases in rental prices and a lack of labour supply in parts of the Midlands. A tenant at DIRFT had to cancel expansion plans as they could not get enough workers. Parkside provides an opportunity to overcome these issues and would therefore be attractive to potential tenants.

However without an operator for the site, regardless of the strength of stakeholder support, the site is unlikely to become operational as a SRFI. However there has been good interest for operating the site shown by two separate organisations, a rail freight operator and a logistics company.

"Parkside has the potential to deal with 20 train in and out per day. If this was achieved then it would be beneficial to move operations to the site".

UK Rail Freight Operator

"The Parkside location for a terminal is a good one as it is right on the West Coast Mainline and potentially would be good for trains from London to Scotland to call into for delivery and collection with minimum time loss. It is a terminal site that we might be interested in operating."

Logistics company

This is very positive and shows that there is clear market demand for the site as these organisations are closest to the rail freight 'big players' and therefore have the best understanding of their future rail freight strategies.

Another positive to come from the consultation is the possibility to utilise a rail freight connection for the construction of the Parkside site.

"A rail connection from start can help reduce road movements during construction phase, leave a legacy and assist with the funding case going forward."

Construction company

This would help to mitigate the road movements involved in the construction phase of the development and subsequently make expanding the rail infrastructure so it is capable of handling intermodal freight movements much easier as the connection the network is already there (large investment). The reduction in road movements associated with construction would also help to get planning permission for the site and additionally would provide for safeguarding of land for the additional rail freight infrastructure. There is also scope for the site to be used for bulk rail freight movements, this was cited by stakeholders as beneficial for the Parkside site as it would enable the site to be flexible with regard to market trends. A possible bulk movement could be to/from one of the ports in the north. Although the distances are relatively short the volumes achievable from a Port may make this type of movement viable. Similar movements that have proved to be economically viable were outlined by stakeholders.

"We currently operate a rail freight route of 20-25 miles and it has proved to be very efficient and very cost effective."

Construction company

3.8 Existing and Planned (S)RFI's

This section outlines the existing and planned capacity of rail freight in the Parkside catchment area, wider catchment area and nationally.

3.8.1 Catchment Area / Wider Catchment Area

There are several competitor sites to Parkside including several intermodal sites that are already open such as Trafford Park and 3MG at Ditton.

3MG already has an operational intermodal terminal, operated by the Stobart Group next to Tesco's North Western Regional Distribution Centre. This terminal is currently served by 5-6 daily trains, handling containers for major shipping lines e.g. Maersk. This equates to over 120,000 containers per year. The terminal is already capable of handling trains up to 24 wagons in length (approximately 500m trailing length). Freight trains serving 3MG are currently stabled and sectioned at the existing Network Rail freight sidings at Ditton. However, planned investment at Ditton will see the development of three new 775m length reception sidings. These new sidings will increase the rail capacity of 3MG, allowing the site to handle up to 16 trains per day per direction. This is the equivalent of approximately 400,000 HGV movements per annum. The 775m siding length will also allow 3MG to handle full length trains via the Channel Tunnel.

In the future Knowsley which is currently being refurbished and Peel's new Port Salford site are likely to be competing with Parkside for intermodal trade.

The Potter Group based at Knowsley is refurbishing their rail terminal to handle Merseyside trade. They are also planning a development to potentially offer an improved rail freight solution to allow the facilitation of intermodal movements. However at the time of writing the Knowsley terminal is not handling any regular freight trains. Part of the problem has been that the infrastructure has been unsuitable for modern train operation. As part of the upgrade work, the loading gauge on the Kirkby to Wigan line is being upgraded to W9 loading gauge which allows temperature controlled containers to move by rail as well as the standard ambient boxes. The upgrade will also result in extending rail sidings so that the terminal can handle 750m long freight trains.

Peel Holdings is developing the Port of Salford inland tri-modal terminal near the M60 on the A57. The development features a new 1.27km rail link to the Chat Moss Line and four 775m reception sidings. Phase 1 will have the capacity to handle 300,000 container units in its inter-modal terminal and 3.7 million pallets per annum through its distribution buildings. It is intended to attract up to 16 freight trains per day and lead to the substantial net transfer of 21 million HGV kilometres from the strategic road network. The Port of Salford and Parkside are likely to be in competition with each other for Port intermodal traffic. Traffic from Liverpool is unlikely to go to Parkside as Peel have are developing their own facility at Salford. Nevertheless it is thought there is plenty of additional traffic from south or east coast ports and potentially some domestic intermodal flows.

3.8.2 Nationally

On a national scale there is a wide range of SFRIs being proposed, some of which have received approval from the Secretary of State (Radlett, East Midlands Gateway, Port Salford). The proposed SRFI's are predominately located in a line connecting the North West (Parkside) with the London and the South East. This can be seen clearly in Figure 3.3. This fits with the speculative developments since Q1 2014 shown in Figure 3.1.

The expansion plans at DIRFT, known as DIRFT III are of particular note. ProLogis plans to replace the existing DIRFT1 Railport with a much larger facility which will cater for 775m length trains and include warehousing and storage facilities. The aspiration is to operate a significant increase in traffic in the future.

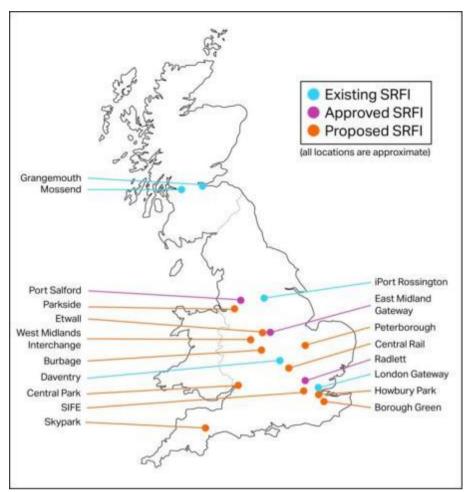


Figure 3.3 – Strategic Rail Freight Terminals (existing, approved and proposed)

"Strategic Rail Freight Interchanges are desperately needed along the line of the M6 between Manchester and London. This would allow the main population areas in the UK to be served within 30 miles."

UK Rail Freight Operator

"Availability of land and labour is an issue – This means that companies are moving further north away from the traditional 'golden triangle' in the midlands."

UK Rail Freight Operator

3.8.3 Comparison of Alternative Sites

As part of the study a comparison of the sites within the wider Parkside catchment area has been conducted. Table 3.1 provides this comparison based on road and rail access.

Table 3.1 – Comparison of access for other sites (existing and planned) in the wider catchment area

Site	Status	County Name and Region	Road Access	Rail Access	Other comments
Parkside	Proposed	Merseyside, North West	Strategic access via M6 (north and south) and M62 (east and west)	 Previous access to the site via Chat Moss line to the north of the site Strategically located allowing for movements from/to the north, south, east and west 	 Formerly rail connected in its past use as a colliery with disused tracks still in place Suitable to be a SRFI
Ditton	Existing	Cheshire, North West	 A562 dual carriageway close to site of new Mersey crossing M62 run to the north of the site – Accessed via A5300 or A557 	Access from Crewe to Liverpool line, west of Widnes	 Expansion of the existing facilities at Ditton (Mersey Multimodal Gateway Logistics Park) Could result in 16 Intermodal trains a day to and from the major ports as well as domestic traffic Intention is to receive trains up to 775m in length at this site.
Knowsley	Being refurbished	Merseyside, North West	 Access via A5207 to M57 Access via A5280 to A580 	Access from Liverpool to Wigan line east of Kirby (diesel only)	Small facility aimed at catering for waste trains to Teeside but capable of handling 1 or 2 intermodal trains per day
Seaforth	Proposed	Merseyside	Access via A5036 or A565 in Bootle	Bootle branch line serving the port	New facility at the Port of Liverpool to serve the growth of Liverpool 2
Port Warrington	Proposed	Cheshire	Access via minor road on to A56 and then M56	Connected to West Coast Main Line through Warrington freight yard and Walton Old Junction	Small rail freight facility to serve 1 or 2 companies
Port Cheshire (EP)	Proposed	Cheshire	Access via local road on to M53	Connected to Helsby to Hooton line (diesel only)	Small rail freight facility to serve 1 or 2 companies
Four Ashes	Proposed	Staffordshire	Access via A5 to M6 junction 12	Connected to West Coast Mainline	Planned to be a SRFIWould serve a different catchment area to Parkside

Site	Status	County Name and Region	Road Access	Rail Access	Other comments
					(North Midlands) main
Port Salford	Under construction	Greater Manchester	Access via M60 / M62	Connected to the Manchester to Liverpool route (Chat Moss route),	It will be the inland water served distribution park using the Manchester Ship Canal Potential to be a large rail facility
Garston	Existing	Merseyside	A561 - Speke – Liverpool	Access off Crewe – Liverpool line	Existing terminal that is already serving approximately 4 trains per day
Trafford Park	Existing	Greater Manchester	Access via urban roadsLocated inside the M60	Access to the terminal is achieved through central Manchester and Piccadilly	3 existing terminals Fairly constrained

Table 3.2 provides a comparison of the current train movements and the potential maximum for each site. This allows the potential additional train movements in the catchment area to be assessed and Parkside's role in achieving that to be examined.

TfN's Freight and Logistics Strategy sets out that demand for GB Freight Train kilometres in the North is set to double between 2014 (10.8 million km) and the 2033 central case forecast of 19.2 million km. In connection with supporting this increase in train operations additional intermodal train handling capacity will be required in the form of terminal handling slots. In the North only Parkside and Port Salford offer fully open access services. The Long Term Planning Process – Freight Market Study (2013) is forecasting a near doubling of total intermodal traffic (tonne Km). With Port Salford offering a potential 10 trains a day and Parkside offering under the medium scenario 8 trains a day (Table 3.2), there is a requirement for the supply of additional intermodal train handling slots (over the current 25 trains per day) to support the TfN Freight and Logistics Strategy recommendation of 50ha per year target of multi-modal distribution parks in the North of England.

Table 3.2 - Comparison of current / potential maximum capacity (number of trains) at other sites (existing and planned) in the catchment area

			Number of trains		
Site	Status	County Name and Region	Current	Potential Maximum	Potential Additional
Parkside	Proposed	Merseyside, North West	0	12	3 (small) /8 (medium) /12 (large)
Ditton	Existing	Cheshire, North West	6	16	10
Knowsley	Being refurbished	Merseyside, North West	0	2	2 (*)
Seaforth	Proposed	Merseyside	0	15	15 (*)
Port Warrington	Proposed	Cheshire	0	2	2 (*)
Port Cheshire (EP)	Proposed	Cheshire	0	2	2 (*)
Four Ashes	Ashes Proposed Staffordshire		N/A – Not in catchment area		
Port Salford	Under construction	Greater Manchester	0	10	5 (*) 5
Garston	Existing	Merseyside	4	4	0
Trafford Park	Existing	Greater Manchester	15	15	0

^{(*) -} Trains associated with specific port and single customers so are not open access

3.9 Summary

It is clear from the market demand and supply assessment and stakeholder engagement that there is sufficient demand for a SRFI in the North West. Nationally the demand for both warehouses and rail freight interchanges is along the M6 corridor between Manchester and London as shown in Figure 3.1 and 3.3.

Stakeholders are very positive about the site's feasibility as a SFRI. This is mainly due to its unrivalled ability to serve both North-South intermodal flows on the West Coast Mainline and east-west intermodal flows on the Chat Moss line. The site can also receive trains from all directions (north, south, east and west) which provide maximum operational flexibility and resilience to allow changes in market trends to be catered for. Road access is also very good with the M6 and M62 in close proximity to the site.

In comparison to other current and potential sites the Parkside site scores highly on all the attractiveness metrics. No other sites in the catchment area have the potential to receive trains from all directions with some only able to receive trains from one direction. For example Garston can only receive trains from the South. Additionally the Parkside site's access to both the M6 and M62 is highly advantageous meaning that the Parkside site has the potential to be an 'all points' operation, offering as much in terms of intermodal activities as it might in terms of being a destination and general logistical base in its own right. The site is also felt to be complimentary to Port of Salford and any competition is likely to stimulate the market rather than suppress it. This is due to growth in the market demand for intermodal terminals in the North West as stated in the Transport for the North Freight and Logistics Strategy (2016).

It is therefore felt that the site is of national importance as well as regional significance in relation to the market demand and need for the delivery of new and improved SFRIs, and in supporting the economic and employment growth objective in St. Helens and the Liverpool City Region.

Operational Requirements

04

4. Operational Requirements

4.1 Introduction

It is critical to match the specification and functionality of a rail freight terminal at Parkside with the freight market in the surrounding area. Therefore, in this section the broad operational requirements for varying sizes of rail freight interchange will be provided. This will allow the demand (number of trains per day) to be matched with required specification and functionality of the site.

The different aspects of specification and functionality will be outlined under the following headings:

- Major infrastructure components
 - Rail support infrastructure
 - Road support infrastructure
 - Cargo transfer infrastructure;
- Terminal equipment; and
- Ancillary services

The specification and functionality required for a small, medium and large rail freight terminal at Parkside will be outlined in this section. General aspects of rail terminal specification and functionality are outlined initially as context.

4.2 Major Infrastructure Components

The design capacity of a domestic (non-port) intermodal terminal needs to be measured for three basic areas:

- Rail (arrival and departure trains)
- Road (arrival and departure of trucks)
- Cargo transfer area (transfer containers from rail to/from trucks)

Typically intermodal terminals need to have a balance between these three components in order to avoid mismatched investment in any one terminal area. In order to determine this balance, each component can be measured in terms of their throughput capacity.

4.2.1 Rail Support Infrastructure

This relates to the amount of track in the terminal required to effectively and efficiently handle the volume of trains serving the terminal. This will require estimating the peak rail demand and then creating sufficient track capacity in terms of length and number, to support the rail operations based on track occupancy and usage.

Arrival/Departure Tracks

These tracks keep the terminal fluid and prevent the mainline from becoming congested with traffic. This means tracks should be long enough to hold entire train lengths as defined by EU standards (750m + locomotive) or 775m. The number of tracks will directly relate to how many trains may be arriving/departing within the same time period based on train schedule.

Ideally the number of arrival/departure tracks would be zero with all trains arriving/departing directly from the load/unload area (Pad Tracks). However the conflict between pad tracks, which cannot have overhead electric wires for safety reasons due to the need of overhead cranes to top pick the containers lifting them on and off wagons, versus the mainline locomotives that require overhead catenary system means that such locomotives cannot bring the containers directly into the pad tracks.

Therefore mainline trains will need to arrive on catenary fed tracks and the use of a diesel or battery operated electric shunter locomotive will be required to shunt the wagons into and out of the pad tracks which will not have catenary. Alternatives to this could include having a "last mile" dual energy mode locomotive that could

be an electro-diesel or have a battery pack. Or using the "coasting" method where the train lowers its pantograph and coasts into position.

Furthermore, variances in train schedules may require that arriving trains are held temporarily in the arrival/departing tracks terminal (sometimes called reception siding) while the actual pad tracks are used to finish serving other trains. Therefore these tracks serve as a type of buffer between mainline schedules and the actual cargo transfer taking place on the pad tracks.

Storage Tracks

In addition to the main operational tracks there is a need for sidings for surplus wagons as necessary to support the train service. These tracks could be shorter than 750m to provide for ability to easily shunt wagons using shorter strings. It is also dependent upon how balanced the rail service is.

Ideally all the wagons arriving are unloaded and should depart loaded with another container without any shunting. The ability to fill every wagon with a container involves the ability to balance cargo movements. In reality, there may be imbalances in service that require additional wagons to be held for a period of time for different train services.

Repair Tracks

These tracks enable wagons to be repaired within the terminal without having to move them to remote repair facilities. This requires sufficient track length to hold the longest wagons and capacity to repair wagons at a rate in keeping with the normal peak requirements.

4.2.2 Cargo Transfer Infrastructure

This is the heart of the terminal operation where Rail (trains) meets Road (trucks). The optimum shape and size of this area will be dictated by the forecasted volumes to be handled taking into account the type of container or bulk traffic:

- 1. Dry
- 2. Reefer (refrigerated/heated)
- 3. Bulk/Liquid
- 4. Dangerous Goods

Rail Pad Track

This should be of sufficient total length to provide access to cranes for transfer as required by the train service requirements. Ideally there is sufficient track to hold any train requiring unloading or loading at any given time. Furthermore trains should be able to arrive/depart directly to/from the pad tracks.

In general practice concerning asset use, a turnover of the Pad Tracks twice every 24 hours is considered a good use of rail asset for a domestic terminal. Port terminals on the other hand may have a much higher turnover based on limited track space typically found in ports, which in turn requires far more rail shunting costs for handling trains arriving and departing.

Based on AECOM terminal design experience, a good benchmark to use is the ratio between the lengths of Rail Support track versus lengths of Rail Pad track. Efficient domestic terminals generally run with a 1:1 ratio respectively. An inefficient terminal about 2:1.

Pad Area

This is the area accessed by outside trucks to drop off containers or pick up containers near or at the pad tracks. Historically trucks were restricted to remote parking areas to pick-up containers already preloaded on chassis that were shunted there by terminal shunt truck operators. However best practice today is to permit outside trucks direct access to pad track "roadway" areas to minimise the distance containers are moved and number of times they are handled by terminal staff.

Staging Area

Ideally the truck arrives just in time to drop off the container for the train, which is directly loaded to the rail in one move by the crane. Similarly the truck picks up the container that has just arrived by train again with one crane move from the train to the truck. If this could be coordinated terminals could be extremely efficient. The staging area design could be very narrow (along pad tracks) and the cranes would thus make a one to one move for every container throughput.

However the reality is that the direct transfer of containers from wagon to truck or wagon to wagon, while preferable, will not always be possible due to timing of service requirements such as shipper loading constraints at their locations, or consignee appointment time restrictions at their locations, or customs holds being placed on a container for inspection, or late trains, or late trucks, etc., all of which are beyond the control of the terminal.

Therefore cargo transfer areas also include container staging areas (temporary storage buffers) based on a calculated percentage of containers handled with the average dwell time in the terminal.

4.2.3 Road Support Infrastructure

Similar to rail support, this is primarily defined by the road access to and egress from, the terminal for trucks. Very simply, the gate activity then requires a certain number of traffic lanes as well as a minimal queue length to ensure that arriving truck traffic is not backed up onto local roads or highways and departing trucks do not congest the terminal exits. The number will be based on peak demand against best practices (see below) to determine the physical gate requirements. This gate calculation includes cars belonging to administration building staff, other employee parking and temporary parking area for trucks requiring assistance on arrival or departure.

The ability of the terminal to handle trucks efficiently as they arrive and depart is part of the "in-gate" and "outgate" functions.

Ingate

This functions as the primary contact for the truck. For best practice, all of the information transactions for the truck to carry out their work within the terminal including both the dropping off and collecting the container in the terminal, should be processed at the Ingate.

The ability of the terminal to get advance data on which truck, which driver, and which container is arriving is key to keeping the gate flowing and the physical size of the gate infrastructure to a minimum. For liability reasons containers need to be scanned for external damage as they enter and damages noted since they will be receiving and responsible for the container once dropped off.

Ideally the Ingate is one lane wide and only one truck queue that never has to stop a single truck, that is scanned as it moves and identity confirmed and authorized by a wifi system that provides security checks, and sends data directly to the driver for this authority to enter along with their drop off location in the terminal and their authorization to pick up an outbound container with its location and status. The reality is there is a stop required at the Ingate with current technology.

Outgate

This requires a simple scan of the truck and container with authorisation to depart to ensure the correct container is taken by the correct party.

Ideally this should not require any stopping. However at this point with current technology there is a stop required typically for signatures for receipt of container and confirmation of the truck driver ID.

4.3 Terminal Equipment

The service requirements, whether staging or other handling requirements as well as the overall container volumes generally dictate the type of equipment chosen which also affects the overall shape and size of the layouts.

The type of cranes/equipment chosen will dictate the actual shape and size of the transfer areas. The unload/load tracks (Pad Tracks) will be designed by investigating optimum operating impact based on best practices. This typically involves moving containers the least distance per handling, as well as the fewest overall handlings.

Lifting Equipment

Lifting equipment can be either manual or automated depending on the type of equipment used; typically rail-mounted gantry (RMG) cranes are used for an automated environment. Transport equipment is typically manually operated due to the difficulty in separating automated vehicles from street truck activity.

The types of lifting equipment used in an intermodal rail terminal environment are typically either an overhead crane such as an RMG or a rubber-tyre gantry (RTG), or a front-end loader such as a reachstacker (RS) or top-pick.

Rail mounted gantry (RMG) cranes are the most common type worldwide and have a number of advantages over other types of lifting equipment. Figure 4.1 shows RMG cranes being used during night time operations at Birmingham International Freight Terminal (BIFT). The design of this type of lifting equipment allows for easy attachment of the required lighting equipment.

Rail Mounted Gantry cranes are fully customisable to the end customers' requirements. In the UK, it is typical to go to a maximum of a stack of five containers (5*2.9m – 14.5m total). An additional allowance for the RMG 'Spreader' of approximately 4.5m gives a working height in the region of approximately 20m (14.5m + 4.5m). If a lower height of 18m is required then the stack height on containers will be reduced to a maximum of four high. This would result in an increase in the amount of floor space required for the same number of containers (five high to four high).

Figure 4.1- Birmingham International Freight Terminal (BIFT)

RMG's when operated over a large number of tracks can be used to avoid the need for block loading by destination. Instead the RMG's can load trains as the trucks arrive no matter the destination. This is similar to the DHL forwarding operation that flies all parcels to a single sort plant in Leipzig (no matter the destination) and then sorts all parcels by outgoing destination plane loads. While this is not the function of Parkside directly, it does show the strength of a network tied to a single sort terminal with a large number of tracks under the cranes.

RMGs have many appealing features. They are custom designed and can be very wide enabling many tracks to be covered. RMGs are electrically powered and are highly automatable (if required). They can also be operated remotely, with operators sitting in an office building as opposed to on the crane. RMGs can also spin containers which can be very valuable for terminal operations if the containers are not all aligned in a uniform direction.

The primary downside of RMGs is the cost, with a single crane costing £6 million. The other main downside is lack of operational flexibility. RMGs must stay on their rails, and cannot be used for work elsewhere in a terminal. It is also often infeasible to move them between terminals. For this reason RMGs are more appealing for medium to large size terminals with reliable volume. RMGs are especially appealing in areas with high land cost because they are the most land efficient style of operation.

Front loaders, either top-picks or more commonly, reachstackers (RS), are very popular for rail handling worldwide. They are very flexible machines that can work both trains and buffer, and they are off the shelf equipment costing less than £700,000 each to buy. For these reasons front loaders are very popular in small terminals where the budget for capital equipment is low.

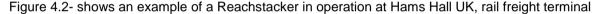


Figure 4.2- Example Reachstacker Operation – Hams Hall Rail Freight Terminal

The disadvantage of front loaders is the fact that they need at least 20m of clear space perpendicular to the rail tracks between each pair of tracks in order to operate. They also require a very heavy duty pavement surface in order to support the very high wheel loads involved. Front loaders are typically diesel powered but hybrids are now available and tend to have relatively high maintenance costs both for the equipment and the underlying surface pavement.

Table 4.1- Summarises highlights of each likely system to be used for terminals of different sizes.

Table 4.1- Summary if Mode Options vs. Terminal Size

Terminal Size or	Small	Medium:	Large:
Throughput target			
Rail lifts done by:	Front loader (Top-	Any, depending on	Rail Mounted Gantry
	pick or Reach	shape, labour and land	(RMG)
	stacker)	cost.	
Internal Transport	Tractor or front	Tractors	Tractors, or RMG buffer
by:	loader		
Buffer	Grounded or	Grounded or wheeled	As much as possible
	wheeled	depending on land cost	under the RMG
Comments	Typically using front	Nearly any type of	RMGs are expensive
	loaders for both rail	operation can be	machines so they should
	and buffer moves to	effective for mid-sized	be used as much as
	save on cost. Front	terminals. Site specifics	possible (i.e. buffer+rail
	loaders are also	will drive the decisions	movements) to reduce
	effective on non-	on mode choice	their unit cost of
	rectangular shapes		operation. Savings on
			tractors is very important
			in high labour cost areas.

Reach Stackers could be used in any of the three terminal sizes in Table 4.1, but are most cost effective for small terminals without significant land area and labour cost constraints. Rubber tyred gantry (RTG) cranes become more cost effective for medium size terminals of perhaps 100,000 or more annual rail lifts, depending on local labour conditions, terminal configuration etc.

RMGs are more cost effective for larger terminals due to very high fixed infrastructure costs including electrical infrastructure, fixed crane rails, and the cost of cranes themselves. Most RMG-based intermodal terminals worldwide are designed with a minimum of four working tracks under the frame of each RMG, if not more, in order to keep them productively engaged.

Table 4.2 summarises cost and operating characters of the three primary types of intermodal terminal lifting equipment.

Table 4.2 - Comparison of Features and Costs of Main Types of Lifting Equipment

	Reachstacker (RS)	Rail Mounted Gantry (RMG)
Machine life (operating hours)	40,000	120,000
Typical productivity (mv/hr/machine)	15	20
Fuel type	Diesel	Electric
Working tracks accessed per machine	1 or 2	4 to 8
Ability to store containers in trackside buffers	N	Υ
Ability to automate	None	High
Relative infrastructure cost	Low	High
Relative operating cost	High	Low
Relative emissions	High	Low

Reach stackers are a fairly "off-the-shelf" machine that does not vary much from location to location. Another option is to use a larger specialized RTG to allow storage, rail tracks, and a truck lane under the frame of the same machine. While these machines are more expensive, they may save money overall due to reduced operating cost, since a buffer stack under the frame of the RTG eliminated the need for many terminal tractor moves.

RMGs are typically used for medium to large terminal applications in high labour cost and land constrained environments. RMGs allow for very dense operations, as all terminal activity (tracks, truck lanes, and container storage) can take place under the frame of a single large machine.

4.4 Ancillary Services

There are other terminal services which may be provided at the terminal. These will depend upon the logistics involved and each are a potential source of terminal revenue.

Customs Facility

The basic requirement for Customs is to be able to hold a container at their request in a secure compound and then if necessary provide a dock and suitable facility where the contents can be unloaded, inspected and reloaded as necessary. Typically they can request the container be moved to an existing customs site (probably at the port) where they have staff available. However they may be willing to use suitable facilities within the terminal provided they are secure and built to their needs, and they are willing to move staff to the facility to carry out inspections. This will likely depend upon the volume of the intermodal terminal's inspections which is yet to be determined.

Having on-site facilities is advantageous to the terminal in that it saves customers the cost of trucking the container to another site as well as expediting the process. In addition the terminal can charge for this interminal service.

Container Storage

Should the dwell time of staging loaded containers become excessive, the terminal may employ demurrage charges. These charges are more to encourage the flow of containers from the terminal to avoid congestion, but they can, depending upon the capacity and situation at the terminal, generate revenue for the terminal.

In some cases it makes sense to bring the empty containers back to the terminal for storage after being unloaded at a customer site while they wait for a new load locally. The owners of the containers typically need them inspected and cleaned, and repaired if necessary after use and prior to being used for a new load. The terminal may provide the best opportunity to do this work provided it has the capacity in the layout and it is not too far from either the unloading or loading point of the next customer. This can also save costs from a trucking point of view if the empty container needs to be taken to the terminal while another container waits at the terminal to be picked up, which provides a double move for the truck (to and from the terminal). In the case of the logistic hub tenants, the empty container storage can be part of a very cost effective solution in the disposition of empty containers.

Equipment Repair Areas

The Lift and Shunt equipment will also require repair areas. If the cranes are rail mounted they will be serviced in position, which would require tools and supplies to be brought by service trucks to the cranes. Otherwise a garage area suitable for the repair of shunt trucks and work area for mobile cranes will be situated in the appropriate area within the terminal. Typically this is along the periphery where they will not interfere with future expansion requirements of the terminal, but central enough to provide good access the staging area of the terminal.

Terminal Trucking Services

The pickup and delivery of containers to customers could provide a significant source of revenue to the terminal. Typically this service would be contracted by the forwarders or shipping lines as part of their overall charges. Since there might be a garage within the facility, there could be the opportunity to have a fleet of road vehicles stationed at the terminal. Whether owned or just maintained on site would need to be determined from the commercial study, but it may be an additional source of revenue for the terminal.

There are several software packages which provide support in this area. This type of Freight ITS application corresponds to advanced systems aimed at simplifying and automating freight and fleet management operations. Once the fleet is equipped and linked to the dispatchers' computers and company's data processing and storage infrastructure, a huge quantity of data becomes available for immediate decisions, as well as for background analysis and planning activities.

These systems aim to process this information and integrate it to the current transportation plan to achieve a more timely operation, efficient allocation and utilization of fleet, and satisfaction of customer requests.

These systems can operate in a demand-responsive mode where the demand for services is not known beforehand and the fleet has to be deployed and managed in real-time to handle them as effectively as possible. This is particularly relevant to rail freight terminals where many "local" pick up and drop operations are performed through the day.

4.5 Specification and Functionality of Potential Parkside Logistics and Rail Freight Interchange

4.5.1 Specification

Table 4.3 outlines the specification requirements of the potential site.

Table 4.3 – Specification of the potential rail freight terminal

Terminal size		Small	Medium	Large
Indicative number of	trains per day	1-3	4-8	9+
Terminal track length		>750m	>750m	>750m
Number of handling to	racks	2	4	6+
Handling equipment	Reach stackers	✓	×	*
	RMG	×	✓	✓

4.5.2 Functionality

Table 4.4 outlines the functionality requirements of the potential site.

Table 4.4 – Functionality of the potential rail freight terminal

Terminal size		Small	Medium	Large
Indicative number of trains per day		1-3	4-8	9+
	Road to rail	✓	✓	✓
	Rail to road	✓	✓	✓
Core services	Rail to rail	×	✓	✓
	Warehousing	✓	✓	✓
	Container storage	✓	✓	✓
	Reefer / Dangerous Goods services	✓	✓	✓
Ancillary services	Customs facility	*	✓	✓
	Equipment repair area	×	*	✓
	Terminal trucking services	×	×	✓

Rail Access

05

5. Rail Access

5.1 Introduction

This section outlines the rail access issues in relation to the Parkside site. This includes:

- Existing and future rail infrastructure
- Current and future rail capacity (West Coast Mainline and Chat Moss Line)
- Rail freight forecasts
- Potential origins and destination for the Parkside site
- Potential site access

Network Rail (David Hunter, Freight Route Manager, North West and London) have been consulted with through a one-to-one meeting held on the 29/04/2016. The findings from this consultation have been used during the development of this section. Additionally rail freight operators (FOCs) including DB Schenker, GB Rail Freight and Freightliner have been consulted (see Table 1.2).

5.2 Existing Rail Infrastructure

Parkside is well situated for potential rail access, being adjacent to both the West Coast Mainline (to the west of the site boundary) and the Chat Moss line (running along the northern edge). A series of junctions and chords connect both routes, allowing trains to arrive and leave the area in all four directions.

To the north and south of the site, the West Coast Mainline is a mostly four track, fully electrified railway running between Scotland and London via the North West and West Midlands. It is a key freight and passenger artery. The Chat Moss site runs east to west linking Manchester to Liverpool and is a two track electrified route.

There are remnants of both the rail connection to the former Parkside Colliery (accessed via a loop on the Liverpool bound Chat Moss line) and the ex-Motorail Terminal (on the northern side of the Chat Moss line by Newton-le-Willows station) close to the site.

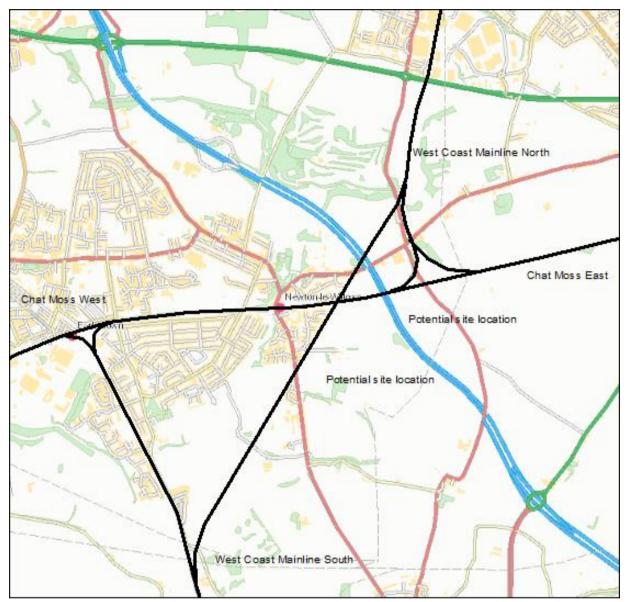


Figure 5.1- Local Area Rail Network

Standard headways on the Chat Moss route are 3 minutes (4 when following freight services), with those on the West Coast mainline being 4 minutes. On the triangular junctions, minimum headways are generally 4 minutes (where values provided).

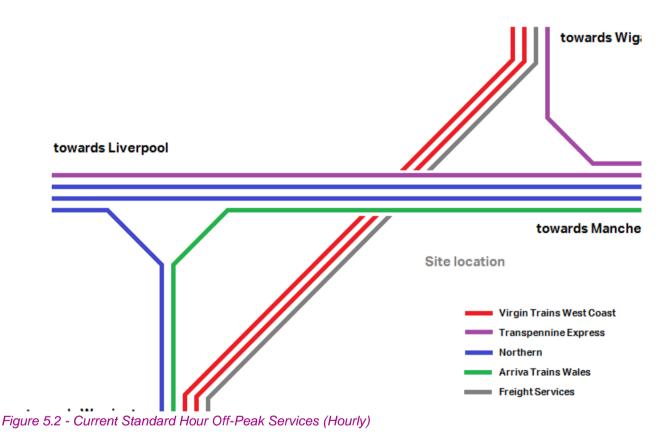
5.3 Current services (2016)

5.3.1 Chat Moss

There are currently four passenger trains per hour off-peak utilising the Chat Moss route adjacent to the Parkside site. Transpennine Express operates an hourly Liverpool to Newcastle service along the route, non-stop between Liverpool Lime Street and Manchester Victoria. Other Transpennine Express services (generally one per hour) between Manchester and Scotland leave the Chat Moss route to the east of the scheme area at Parkside Junction.

Northern operate both an hourly semi-fast service between Liverpool Lime Street and Manchester Airport, and an hourly stopping service between Liverpool and Manchester Victoria. A (generally hourly) service between Warrington Bank Quay and Liverpool joins the Chat Moss to the west of the Parkside site at Earlestown.

Arriva Trains Wales operate an hourly service between North Wales (predominantly Llandudno) and Manchester via Earlestown with a number of services since the May 2016 timetable change being extended to Manchester Airport. There is also an additional peak hour service to (AM) and from (PM) Manchester that passes Parkside.


There are also a number of freight services utilising the route (such as Drax-Liverpool biomass). However these tend to operate outside of peak hours and are very limited in number (3-4 trains daily).

Outside of these regular passenger services, there are a number of empty coaching stock (ECS) movements, and miscellaneous services such as Railhead treatment trains. It is trains of these types (two timetabled daily, although liable to alteration at short notice) that are the only users of the west to north chord (Newton le Willows Junction to Lowton Junction).

5.3.2 West Coast Mainline

Virgin (West Coast) operates two trains per hour off-peak along the West Coast Mainline along the western edge of Parkside. Both originate at London Euston and terminate in Scotland (one fast via the Trent Valley and one via the West Midlands). There are additional peak time services on the route to/from destinations in the North West.

As of April 2016, there are a considerable number of freight services that utilise the route (carrying between 5-10 million tonnes per annum¹⁰). In a standard off-peak hour, there is an average of around 1 timetabled path per hour. However actual utilisation of these paths differs on a day to day basis due to actual market demand.

5.4 Future (2017-2018) services

5.4.1 Chat Moss

At the December 2017 timetable change, it is forecast that six trains per hour (off peak) will be utilising the Chat Moss line past the Parkside site. Transpennine Express is to divert the existing Liverpool Lime Street to Scarborough service to the Chat Moss route. This will result in two TPE trains per hour passing the site.

Northern will operate an hourly stopper service between Liverpool Lime Street and Manchester Airport. The hourly Warrington Bank Quay – Liverpool Lime Street service will continue to operate via Earlestown. Two new hourly "Northern Connect" services will operate between Liverpool/Chester and Leeds via Manchester and the Calder Valley.

The current hourly Transpennine Express service operating via the east to north Parkside-Lowton curve to the east of the site will be replaced by an hourly Northern Connect service between Manchester and Cumbria.

¹⁰ Network Rail Freight Markey Study, 2013 AECOM

Arriva Trains Wales will continue to operate their hourly North Wales-Chester-Manchester service, with peak hour additional services.

Whilst there will also be additional rail ECS and other non-passenger services, it is not foreseen that these will deviate in the main from the existing principal axis of movement (i.e. there will be no major change in the usage of the Newton le Willows-Lowton Junction chord).

One freight related issue that may arise around this time would be the rail connection to, and development of, Peel Holdings "Port Salford" scheme. This distribution and transhipment hub is situated adjacent to the M60 and Manchester Ship Canal, with the eventual aim of supplementing current facilities at Trafford Park. Key to the development is the inclusion of a rail link to the West Coast mainline via a new chord and the Chat Moss route. Whilst the intention was for the chord to be in place by 2017, development appears to have slipped in terms of completion dates. In addition, the eventual quantum of development (and how much distribution will be by rail, rather than ship or road based) remains unknown. Given that the current (much larger) combined Trafford Park intermodal terminals generate less than one inbound or outbound rail movement per hour between 0800 and 2000, it is unlikely that Port Salford would significantly increase the number of trains utilising the Chat Moss adjacent to Parkside.

Other potential freight impacts include developments at the Port of Liverpool (including the post-Panamax terminal at Liverpool 2). Rail access between the docks and hinterland is limited to two routes, either via Liverpool South Parkway or via the Chat Moss. Again, any changes in demand for paths as a result of developments at the Port of Liverpool are dependent upon scale, most appropriate mode, and origin/destination of particular flows.

5.4.2 West Coast Mainline

It is not expected that there will be any major uplift in Long Distance High Speed passenger provision on the West Coast Mainline by Virgin West Coast in the near future. However Alliance Rail Holdings have secured paths post-2018 to operate six return services each day between Blackpool and London. There will therefore be up to three express passenger trains per hour utilising the West Coast Mainline past the Parkside site off-peak.

The most recent Network Rail Freight Market Study (2013) predicted an increase to 1.5-2 freight paths per hour on this section of route by 2023. Therefore whilst it is to be expected that there will be a slight increase in required freight capacity by 2017-18, it will not be of a substantial nature.

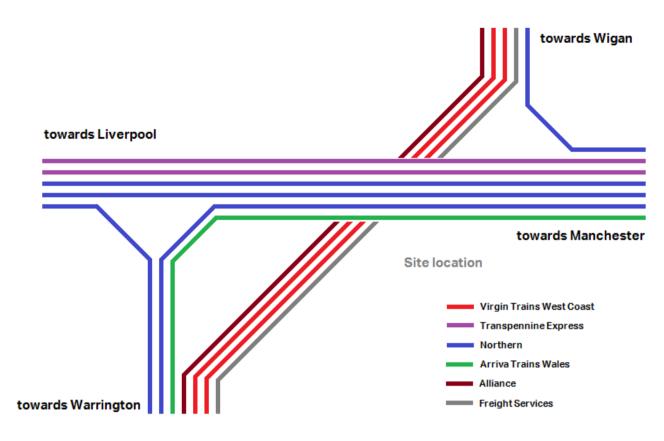


Figure 5.3- Future Standard Hour Off-Peak Services (Hourly)

5.5 Post-HS2 (2026-33)

Whilst only indicative planning assumptions (based on The Economic Case For HS2, PFM v4.3: Assumptions report¹¹) are currently available regarding service levels post HS2 Phase 1 and 2, they give a reasonable basis to assess pathing demands on the local rail network. Phase 1 is expected to be completed as far as the Trent Valley by 2026, allowing two "classic compatible" services each hour to operate via the West Coast Mainline adjacent to Parkside towards Preston and Scotland. In addition, an hourly long distance conventional service will continue to operate between Birmingham and Scotland, therefore totaling three trains per hour on the north-south axis. Beyond 2033 when the high speed route as far as Golborne (north of Parkside) is completed, planned passing services will reduce to one HS2 service to Preston, and a regional Birmingham to Preston service each hour.

There are likely to be knock-on impacts upon the Chat Moss route resulting from both HS2 and the emerging rail transport strategy for the North of England. It is however too early to draw any definitive conclusions regarding impacts upon service patterns and capacity utilisation at this stage.

5.6 Rail freight forecasts

This section provides an overview of the rail freight forecast in the UK up to 2043. Traditionally the UK rail freight market has been dominated by coal, however with the closure of coal power stations and the movement to more renewable sources of energy' coal movements are predicted to reduce drastically from 5.76 billion tonne/km in 2011 to 1.57 billion tonne/km by 2023 and 0.58 billion by 2043 (Figure 5.4). This is a decrease of 89%.

The rail freight industry in the UK is therefore currently in a transitionary phase providing opportunities for other commodities to replace the previously dominant coal movements.

As shown in Figure 5.4 biomass is predicted to replace some of these movements increasing by 1460% from 0.15 billion tonne/km in 2010 to 2.34 tonnes/km in 2043.

¹¹ HS2 Ltd, October 2013

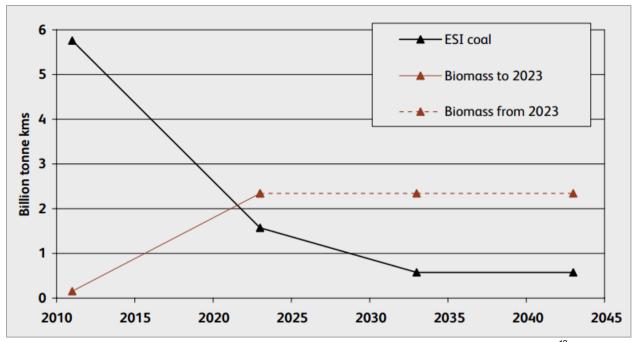


Figure 5.4 – ESI Coal and biomass forecasts: tonne kilometres moved (with 2011 actual data)¹²

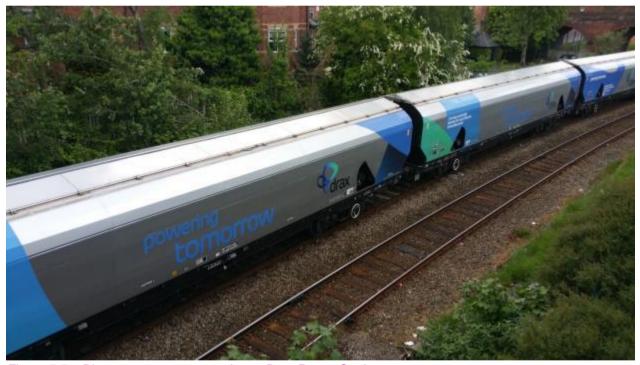


Figure 5.5 – Biomass movement running to Drax Power Station

However it is the intermodal sector that is predicted to have the largest growth and is predicted to surpass current levels of coal movements. Figure 5.6 shows the predicted growth in intermodal traffic across ports, domestic and channel tunnel intermodal movements (tonne kilometres moved). It shows that total intermodal traffic is predicted to increase by 570% from 6.4 billion tonne/kms in 2011 to 42.9 billion tonne/km travelled in 2043. The majority of this comes from domestic and ports intermodal movements, with channel tunnel intermodal traffic predicted to stay fairly constant.

 $^{^{\}rm 12}$ Network Rail (2013), Long Term Planning Process: Freight Market Study $_{\rm AECOM}$

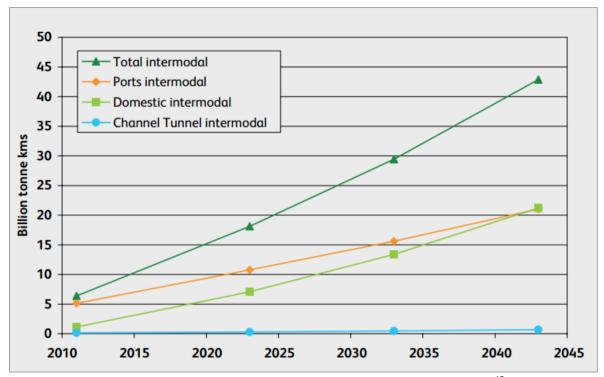


Figure 5.6 – Intermodal forecasts: tonne kilometres moved (with 2011 actual data) 13

Figure 5.7 shows the overall picture for forecasts across the commodities. It highlights that intermodal is going to be the dominant commodity for rail freight in the UK going forward with construction materials the next most prominent commodity, however with vastly lower tonne/km forecasts.

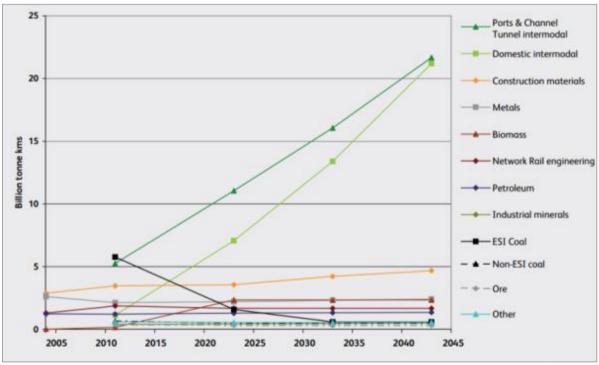


Figure 5.7 – Forecasts by sector: tonne kilometres moved (with 2004 and 2011 actual data) 14

Even if projected forecasts are optimistic there is clearly still expected to be growth in the domestic and deep sea intermodal markets. There is requirement for additional rail freight terminal in the north to facilitate this anticipated growth. Therefore our conclusion is that Parkside is a suitable site to handle intermodal traffic to meet this potential demand.

¹³ Network Rail (2013), Long Term Planning Process: Freight Market Study

¹⁴ Network Rail (2013), Long Term Planning Process: Freight Market Study

5.7 **Committed / Planned Infrastructure Upgrades**

This section outlines some of the committed and planned rail infrastructure upgrades that may have an impact on the potential site at Parkside.

5.7.1 Northern Hub

As part of the Northern Hub, infrastructure improvements are planned to enhance the capability of the rail network across the North of England. The majority of the infrastructure improvements are in relation to improved capacity and faster, more frequent services for passenger services. However the infrastructure improvements also aim to cater for the required freight capacity up to 2030.

The project is currently in the process of identifying recommended options for each of the proposed infrastructure interventions. The work is split into two phases of work based upon delivery of increased network capability by December 2016 (Phase 1) and December 2018 (Phase 2)^{15.}

As part of Phase 2, capacity on the Chat Moss line is to be improved allowing reduced headways between Liverpool and Manchester (via Newton-le-Willows).

Strategic Freight Network 16 5.7.2

• Capacity Requirements on West Coast Mainline North of Preston:

There is a workstream looking at capacity requirements for movements north of Preston on the West Coast Mainline. The work will assess what options may be appropriate to cater for the forecast increase in freight and passenger traffic between Preston and Mossend, in the periods up to 2019, and between 2019 and 2030. Options will not be restricted to infrastructure enhancements, but may include timetabling solutions and routing options. The current position is that the Strategic Freight Network Steering Group have prioritised the loops at Tebay and Beattock for lengthening, subject to further development work.

Capacity Requirements - Southampton to West Coast Mainline

Feasibility work is being undertaken along this corridor to assess the options for increasing freight capacity. Investigations are focusing on areas where signaling headways can be reduced and junctions remodelled to create extra capacity.

Capacity requirements – Port of Felixstowe to Midlands and North

There are currently 31 intermodal rail paths for the Port of Felixstowe and enhancements to the Felixstowe branch line are expected to allow 40 trains a day within the next 2 years. There are longer term plans to increase this to 48 trains per day and it is considered that as Felixstowe currently handles approximately 50% of the UK deep sea container traffic that at least 1 of the additional services could serve a Parkside site.

5.8 **Potential Origin/Destinations**

It is important to understand where the freight trains are likely to come from and hence the routes they are likely to use. The Parkside site is strategically located with access to both the Chat Moss line (east-west route) and West Coast Mainline (North-South route) in theory easy to achieve.

Therefore it is probable that there will be a mix of services using the Chat Moss line and West Coast Mainline servicing the potential Parkside.

5.8.1 Chat Moss Line (East-West Route)

Currently substantial freight flows link the container ports at Felixstowe, Tilbury and Southampton with the intermodal terminals at Manchester Trafford Park, Ditton and Garston.

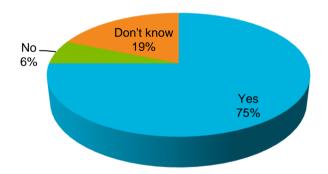
Network Rail, Network Specification - London North Western (2015)

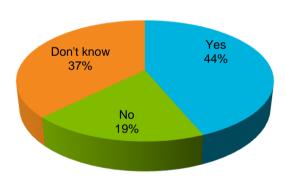
¹⁶ Network Rail, Route Plan London North Western (2015)

The Liverpool Docks, Peak District quarries and Manchester waste terminals generate major traffic and there are also significant flows of coal using the West Coast Main Line and Settle – Carlisle route. The Cumbrian coast area caters for specialist rail services for the nuclear industry¹⁷.

5.8.2 West Coast Main Line

The West Coast Mainline links London and South East England to the West Midlands, North West England and Scotland. Therefore it has an intense and wider range of services (passenger and freight). It is one of the busiest rail corridors in Europe and is designated as a priority Trans-European Networks (TENS) route.


As a major interCity route, it supports long-distance high-speed services from London to the West Midlands, North West, North Wales and Scotland. Long-distance services also operate from London Euston via the Trent Valley lines, which serve Nuneaton, Tamworth and Lichfield Trent Valley. Inter-urban services also operate on the route, supporting commuting into London (Euston) from Rugby, Northampton and Milton Keynes, in particular. In terms of freight the route provides a critical North – South spine route between the Channel Tunnel and the southern ports to terminals in the West Midlands, North West and Scotland¹⁸.


5.8.3 Stakeholder Views

Online survey respondents were asked if they believed there was a market demand for north-south and east west intermodal freight flows. From the responses 75% of respondents indicated that there is a market demand for north-south freight flows, while 44% indicated there is a market demand for east-west freight flows. 6% indicated that there isn't a market for north-south flows, and 19% indicated there isn't a market for east-west flows. The key findings are shown in Figure 5.8.

East-West Freight Flows

70

Figure 5.8 – Do you believe there is a market demand for north-south and east west intermodal freight flows?

Key comments relating to east-west freight flows are as follows:

- Improving economic strength of Liverpool and Manchester, plus anticipated growth of Port of Liverpool
- See the success of nearby 3MG, which can really only handle trains from the South
- The North West processes and offers customer opportunity for return loads
- Attractive for inbound flows from Deep Sea ports and outbound to Scotland and SE/SW
- We know that there is more traffic to be diverted from road if the price & service of rail can compare.
- Deep Sea imports and exports, European imports through southern ports and domestic retail

¹⁷ Route Plan London North Western (2015)

¹⁸ Route Plan London North Western (2015)

Key comments relating to east-west freight flows are as follows:

- Increasing scope for moving containers by rail from National Distribution Centres to Regional Distribution Centres
- Short sea goods ex Europe arriving at Hull/Teesport destined for both North West England (and Ireland)
- Import containers from Tees and Humber would be good rail potential, avoiding M62 congestion

Respondents were also asked about the most likely origins and destinations for rail freight services serving Parkside (Figure 5.9).

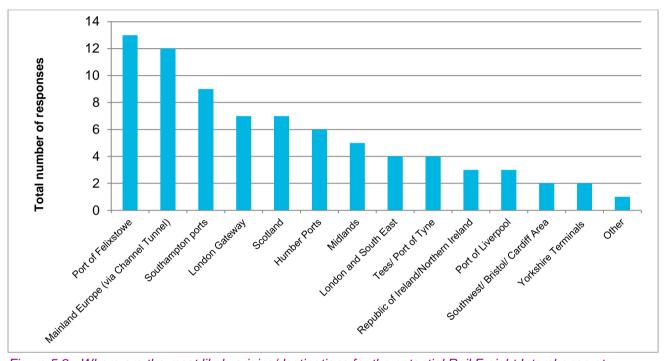


Figure 5.9 - Where are the most likely origins/destinations for the potential Rail Freight Interchange at Parkside?

The top 3 cited locations were the Port of Felixstowe (13), Mainland Europe (via Channel Tunnel) (12) and Southampton Ports (9). Scotland (7) utilising the West Coast Mainline were also considered a potential origin / destination by 7 respondents.

"The focus is now on very large ships – these will predominantly continue to use Felixstowe and Southampton as it is more expensive to go to northern ports"

"A lot of manufacturing is now being reshored to from the Far East to Europe – this provides a large opportunity for rail freight throughout Europe and east coast ports"

UK Rail Freight Operator

"Virtually 100% of consumer goods from the Far East arrive at Felixstowe or Southampton and 70% go by truck"

Private Sector Rail Freight Expert

Despite the optimism of respondents with regard to freight movements to/from the south, current sites in the North West, especially Ditton (3MG), Garston and Trafford Park mainly handle traffic to/from South Eastern ports. This could therefore restrict potential volumes. However the unique selling point of Parkside remains that it could be an 'all points' operation, offering as much in terms of a container exchange as it might in terms of being a destination and general logistical base in its own right.

There was also some interest in East-West freight flows from Humber Ports (6), Tees/Port of Tyne (4), Port of Liverpool (3) and Yorkshire Terminals (2). While not a historically rail freight flow with the development of the 'Northern Powerhouse' there is now a far greater emphasis on East-West commerce making these movements more viable.

Additionally despite its relative proximity to the Port of Liverpool there is potential for the Parkside site to act as an inland container terminal for not only this port but also for certain east coast ports.

"The development of Liverpool as a deep-water container port could bring the potential for short distance rail shuttles from the West to the Parkside site"

Private Sector Rail Freight Expert

5.9 Potential Site Access

When considering potential site access it is important to consider the loading gauge on the rail network serving the site. W9 loading gauge allows for temperature controlled swap bodies and W10 allows for 9 foot 6 inch high cube containers on standard flat wagons. It is useful if the gauge for the local railway caters for both of these sizes to provide maximum flexibility.

In terms of loading gauge the site has access from the north, south, east and west. The West Coast Mainline is W10 equipped with the Chat Moss line W10 equipped directly past the site entrance with a mixture of W9 and W10 along the entire route (Figure 5.10).

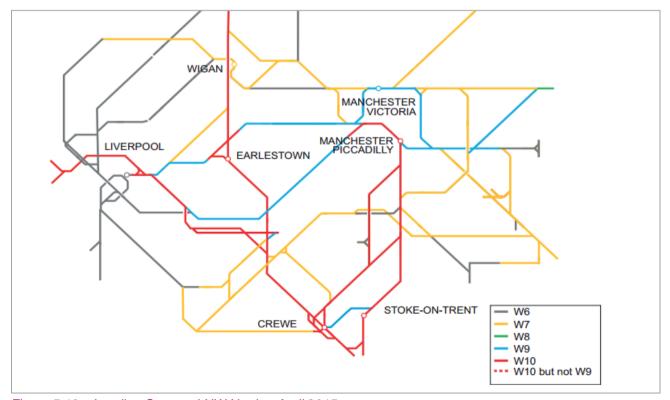


Figure 5.10 - Loading Gauge - LNW North - April 2015

The original rail access to the Colliery which occupied the Parkside site was via the Chat Moss route (between the M6 overbridge and Newton-le-Willows station). This had a number of advantages; it allowed (indirect) access to all routes (Chat Moss - east and west, and West Coast Mainline - north and south), as well as being at grade with the colliery site (rather than the West Coast Mainline which runs in a cutting at this point).

However direct access to the West Coast Mainline does provide a number of benefits, namely more direct access to key intermodal rail flows (north-south) without having to navigate the congested junction at Earlestown to access the Chat Moss line.

This could be a problematic pathing constraint given the predicted increase in through movements along the route over the forthcoming years as outlined above. However given the site constraints, it is questionable whether both north and south facing direct connections could be made between the site and the West Coast Mainline without significant engineering interventions.

One possible solution would be a hybrid approach with a south facing single lead junction provided onto the West Coast Mainline close to the A49 Mill Lane overbridge. A chord would then follow the route of the West Coast Mainline north-east alongside the perimeter of the site before leading onto the eastbound/westbound Chat Moss route. Reception/transhipment sidings could be connected internally on-site to the chord, allowing maximum versatility and flexibility in marshalling or positioning trains without impinging upon main line operations.

Figure 5.11 - Possible Site Rail Access

5.9.1 Potential Access Routes

Access of the Chat Moss line is considered the dominant access point. However this is subject to engagement with Network Rail and Rail North through the GRIP process to confirm the validation of this rail access to the site. Therefore an assessment of the access routes has been conducted based on this site access (Figure 5.12).

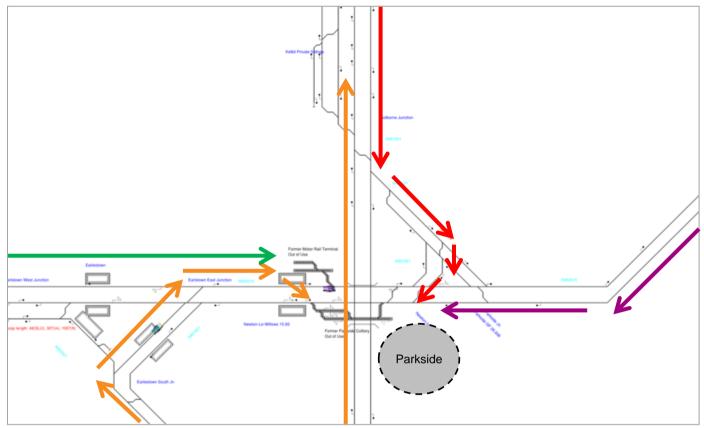


Figure 5.12 - Potential site access

As set out in section 5.9 there are three access routes to the Parkside site (West / South) from Earlestown Station off the Chat Moss Line, from the North (West Coast Main Line) via Lowton Junction and Parkside Liverpool Junction and from the east (Chat Moss Line). A summary of each approach is set out below:

South / West

Expected to be the dominant traffic flow to / from Parkside from the South, the approach to the site will be from Warrington Bank Quay. Train regulation opportunities exist in the Warrington Bank Quay / Crewe areas prior to arrival at the Parkside site.

The main operating constraint is the section of track from Earlestown to the Parkside site which currently has 4 trains per hour (off – peak) increasing to 6 trains per hour in 2018. Another constraint is that a train from the south has to cross the West bound line of the Chat Moss Line in order to access the east bound line with limited opportunity to increase speed between this location and the entrance to the Parkside site where it has to cross the west bound line (for the 2^{nd} time).

Alternative routes exist from the South for trains to go north towards Wigan and reverse using the route as described in 'North' or via Manchester Piccadilly during engineering possessions on the West Coast Main Line.

East

Access to the site from the east will be from just west of the Parkside Liverpool Junction into the sidings on the west side of the site, where the train will then reverse to access the intermodal terminal situated on the east of the site.

Similar capacity issues as for the South / West apply, with the exception that the impact on Chat Moss Line is lower as the on approach the train will be decelerating from a higher speed and accelerating to a higher speed on leaving the site. Additionally the train can enter directly into the site without having to cross over tracks. There are a number of regulation points including one just prior to Manchester Piccadilly.

North

Access to and from the North is achieved off the West Coast Main Line at Golborne Junction prior to Lowton Junction and access into the site at a point just to the West of Parkside Liverpool Junction (same as access from the east). Trains can be regulated at a number of locations including to the North of Golborne Junction.

Road Access

06

6. Road Access

6.1 Introduction

This chapter considers the Parkside site in the context of the local highway network. The existing road access and local highway network in the vicinity of the site will be described, as well as the connections to the site from the Strategic Road Network (SRN).

Highways England have been consulted with during the development of this study, through one-to-one meetings with David Dickinson (Asset Manager, Merseyside), held on 04/05/2016, and Shaun Reynolds (Asset Manager, East (Greater Manchester)), held on 10/05/2016. Shaun Reynolds also attended the workshop held on 18/05/2016. There was also representation from both Wigan and Warrington Councils at the workshop. The findings from this consultation have been used during the development of this section.

6.2 Potential Site Access Options

Figure 6.1 outlines the six potential options for site access at the Parkside site. Initially access to and from the west of the Parkside site from the A49 is considered (potential access no. 1 and 2). However due to the size of the site and its potential capacity for a major logistics development it is envisaged that additional access will be required to and from the east of the site. This is likely to be achieved from the A573. Therefore potential access 3, 4, 5 and 6 are outlined below.

Figure 6.1 – Access options to the site (current land ownership)

The primary site access for the former colliery site connects onto the A49 Winwick Road (Figure 6.1, **no.1**). This junction is still in place, and forms a priority T-junction, with the Parkside access road being the minor arm. The Transport Assessment for the previous ProLogis/Astral planning application noted that this access was no longer in use. However, since that time the junction has been reinstated but is a locked, gated entrance. The site access road is approximately 9 metres wide, and widens to approximately 13 metres at the mouth of the junction. The junction has acceleration and deceleration lanes, both approximately 35 metres in

length, although there is no right-turn lane, meaning traffic turning right into the site would block northbound ahead movements on the A49. The A49 from M62 Junction 9 to the south of Newton-le-Willows and from M6 Junction 23 to the north is currently signed as an HGV access route for the Force 6 Distribution Park and Sankey Valley Industrial Estate in Earlestown. However there are junction capacity issues at Winwick (see Section 6.6). Therefore this access route may only be suitable up to a certain level of traffic unless mitigation work to address the capacity issue is conducted.

A second potential access into the Parkside site is available from the west via the access lane to Newton Park Farm (Figure 6.1, **no.2**), which is achieved from the A49 along Newton Park Drive. This access road crosses the West Coast Mainline via a narrow bridge (approximately 4 metres wide), and would be unsuitable for use by HGVs. Therefore this access has been discounted.

The following options assess the potential site access from the east. Potential access into the site from the east is available from the A573 via a railway maintenance access road (Figure 6.1, **no.3**), which passes underneath the M6 alongside the Chat Moss railway line. This access road is shown in Figure 6.2. However it is envisaged that to fully take advantage of this access the embankment underneath the M6 will need to be removed. See Figure 6.2.

Figure 6.2 – Potential access route no.3

However the use of this alignment is not recommended due to a number of challenges and conflicts. Firstly there is significant uncertainty over the abutment type and the foundations used on the bridge. There would also need to be significant evidence to support that works on a new retaining feature under the existing structure would not impact the structural integrity and undermine the foundations. There could also be major risks during the construction stage with possible limitations on the size of plant used and how this would affect the construction of large retaining features to support the ground conditions and bridge foundations. Additionally the interactions between both Highways England and Network Rail would be challenging to overcome due to the effects construction could have on their live infrastructure assets (e.g. closure of the M6 at certain times).

Additionally such a route would see HGVs coming within close proximity of a high frequency, high speed railway line. Any safety barrier that would be constructed to prevent vehicle ingress onto the track is likely to be ineffective because the collision angle would be between 60-90 degrees and barriers are typically designed for acute angle glancing blows. As a result of a collision at 90 degrees the barrier would not prevent vehicles getting on the track as the barrier would simply fold over (safety barrier is tested at a collision angle of 20 degrees). There are a number of issues that could contribute to a vehicle losing control in that area such

as diesel spillages and ice on the carriageway. For the reasons stated it is felt that locating a tunnel under the M6 adjacent to the Chat Moss Line is unfeasible and has therefore been discounted.

However there is potential to move the alignment of the tunnel south away from the Chat Moss railway line therefore mitigating many of the challenges. There is however a limit to the southerly location that the structure can be placed (around 150m away from the Chat Moss railway line) as motorway alignment moves from being on an embankment to a slight cutting. The precise location would be subject to the relevant surveys as part of the scheme design. However the location of the potential access is indicatively shown in Figure 6.1 (**no.4**). There is a possibility of constructing a box type structure with standard 5.3m headroom with the large embankment providing suitable cover over the substantial structure under the M6 and providing a smaller requirement in level drop.

The last potential access is a bridge over the M6 from the A573 (Figure 6.1, **no.5**). However this has been discounted on feasibility grounds for the following reasons. This section of the M6 is scheduled to be upgraded to a SMART motorway with the associated super span gantries (Figure 6.3). These gantries result in increases to the minimum height clearance required. To provide the required height for a new motorway bridge which has to have a clearance of at least 5.3m to accommodate double deck trailers the gradients of the access ramps will have to be unnecessarily steep. With the volume of HGVs using this route it will prove to be operationally unsatisfactory. Notwithstanding the large infrastructure cost involved with a bridge of this nature would not be economically viable.

Figure 6.3 – Super Span Gantry on the M6 near Birmingham

In order to achieve maximum development capacity at the site it is felt that the main site entrance would ideally be off the A579 around 0.5km to the north east of Junction 22 on the M6 (Figure 6.4, **no.6**). Having the main site entrance located here would minimise the distance trucks had to travel on the local network before joining the SRN at Junction 22 of the M6. Additionally it would mean the entrance is within the St. Helens boundary. The volume of traffic expected to be accessing the site necessitate a new junction to be constructed. This is likely to be a demand responsive signalized junction however further detailed assessment is required to understand the exact specification of the junction.

6.3 Summary of Site Access Options

For a small development, access to the site from the west can be achieved by reinstating the former access road from the A49 (Figure 6.1, no.1). This is recommended because it would require minimal investment due to the junction and former road still being in place. The alternative access route via the access lane to Newton Park Farm (Figure 6.1, no.2) has been discounted as it is unsuitable for HGVs.

In order to facilitate a larger-scale development at Parkside, it is certain that a direct access onto M6 Junction 22 will be required. Discussions with Highways England indicate that Junction 22, taking into account the proposed improvement works as part of the Road Infrastructure Scheme and Smart Motorway schemes, could potentially accommodate HGVs generated by a Parkside development equivalent of up to 8 trains per day. However, any site larger than this, when taken in the wider context of proposed and committed developments in this area, would likely require a more strategic intervention, potentially requiring a redesign of Croft Interchange.

If access to the west of the site from the east of the site is required then from a technical, cost and deliverability point of view a box type tunnel structure under the M6 but away from the Chat Moss railway line (Figure 6.1, no.4) is recommended at the best option. This option is preferable because the construction of the structure can take place under the live running motorway and whilst not without risk and complexity, from a high level assessment point of view, it represents a better option than an alignment adjacent to the Chat Moss railway line (Figure 6.1, no. 3). The option to build a bridge over the M6 (Figure 6.1, no.5) has been discounted mainly due to the challenges and large infrastructure cost required to bridge over a SMART motorway.

On the east side of the M6, a new road would also be required. This could potentially run parallel with the M6 to connect directly to the Junction 22 roundabout, or could utilise the former haul road known as Barrow Lane, which connects to the A579 approximately 500 metres north east of Junction 22.

It should be noted that any new access connecting into Junction 22 would also reduce the distance that HGVs would have to travel to reach the A579. Although this is no longer a primary route, it is likely that a weight restriction would need to be implemented to the north of the Parkside access road to prevent site HGV traffic from using the A579 as a short-cut to the A580.

However access to the M6 Junction 22 is achievable on the section of the A579 that is within the St. Helens boundary therefore any weight restriction will not affect HGVs arriving or departing the site by this route. Consultation with Highways England revealed that they would not have a problem with utilising this site access. Highways England also recognise the importance of the traffic associated with the site joining the SRN as quickly as possible to alleviate local traffic issues. This access route uses minimal local roads and would therefore satisfy this criteria.

6.4 Local Highway Network

The Parkside site is bounded to the west by the A49 Winwick Road and to the east by the A573 Parkside Road.

The A49 Winwick Road runs in a north-south direction between Newton-le-Willows and M62 Junction 9. The road is a single carriageway primary distributor road, subject to a 40mph speed limit in the vicinity of the Parkside site. The speed limit increases to the national speed limit (60mph) approximately 450 metres south of the site. Winwick Road is predominantly residential in nature along the majority of its length in the vicinity of the development site, although the road also provides a through route connecting the M6 to the A580 East Lancashire Road. As such it experiences a high level of through traffic.

Parkside Road (A573) runs in a north-south alignment to the east of the Parkside site. The A573 links the A49 with the A572 Newton Road to the east of Newton-le-Willows. In the vicinity of the development site the A573 is subject to a 30mph speed limit. Parkside Road is generally narrow (approximately 6 metres wide on average), and contains a number of tight bends which would restrict the movement of HGV traffic, particularly in the vicinity of Hermitage Green.

6.5 Strategic Road Network

The SRN in the vicinity of the Parkside site includes the M6 motorway, which runs north-south and passes adjacent to the eastern boundary of the former colliery site. The M62 motorway runs east-west approximately 3 km south of the site. The nearest motorway access from Parkside to the M6 is at Junction 22, although the route to this junction via the local road network is relatively indirect. There are a number of other motorway junctions in the vicinity of the site which can provide access from the SRN. The SRN in the vicinity of the Parkside site currently carries a high volume of freight traffic, and the junctions in this area experience significant peak time congestion which impacts on journey times. The following paragraphs describe each of these junctions in turn.

M62 Junction 8 is located approximately 4.5 km south-west of the Parkside site. The junction does not provide direct access to Parkside, but does provide the primary access into the OMEGA, Gemini and Lingley Mere Business Parks, and this has seen a large growth in freight traffic in the last 2 years.

M62 Junction 9 is located directly north of Warrington. The A49 runs north to south through junction 9, into Warrington Town Centre to the south and Newton-le-Willows north of the junction. Both the M62 and A49 in this area currently experience significant peak time congestion which impacts on journey times. The congestion is primarily focused in the southbound direction in the AM peak and the northbound direction in the PM, as a result of traffic commuting to and from Warrington. North of the junction, the A49 Winwick Link Road is a two-lane dual-carriageway which links Junction 9 with M6 Junction 22. As such, the junction is also used as a rat-run by traffic avoiding congestion on the M62.

The M62 Junction 10 / M6 Junction 21a (Croft Interchange) is the intersection between the M62 and the M6. As the primary interchange between the two motorways, Croft is subject to heavy congestion at peak periods. Croft Interchange is also located in close proximity to both M62 Junction 9 (approximately 2.8 km to the west), and M6 Junction 22 (approximately 2.4 km to the north). The distance between the entry slip-road at one junction and the exit slip-road at the next is considerably shorter than this, less than 1 km for the most part. This therefore creates problems with weaving traffic, which is exacerbated by the high volume of HGVs which pass through the junction.

As noted above, **M6 Junction 22** is the closest motorway access to the Parkside site. However, there is currently no direct access into the site from this junction, and the local road access requires traffic to travel southbound on the A49 Winwick Link Road before returning northbound to the site via the A49 Winwick Road. As such, the preferred route for HGV traffic to the current primary site access is likely to be via M62 Junction 9. This route is approximately half a kilometre shorter than the route to the M6 Junction 22 but it may take a minute longer¹⁹ mainly due to having to negotiate additional traffic controlled signals. Table 6.1 shows a comparison of distance and journey time for each of the different SRN junctions closest to the site.

Table 6.1 – Journey time information

From	to	Distance (km)	Journey time
Parkside site	M62 Junction 9	3.5	6 minutes
Parkside site	M6 Junction 22	4	5 minutes
Parkside site	M6 Junction 23	3.5	7 minutes
Parkside site	M6 Junction 21	5.5	7 minutes

Source: AA Route Planner, 2016

This would therefore potentially result in site traffic exacerbating the existing congestion and weaving issues at Croft Interchange. Junction 22 also provides access to the A579 Winwick Lane, which runs north east-south west between the M6 and the A580 East Lancashire Road. The A579 was part of the primary route network, and as such fairly heavily used by HGV traffic travelling between the M6 and the A580. However, due to complaints from residents in Lane Head, the road has recently been de-primed by Wigan Council. As a

81

¹⁹ AA Route Finder, 2016

result, the primary HGV route is now via the M62 Junction 23. Wigan Council has proposed the introduction of a weight restriction to further enforce the restriction on HGV movement along the A579, although this would also require approval from Warrington Council, since the southern end of the road falls within Warrington Borough.

Junction 23 of the M6 is located approximately 3.5 km north of the Parkside site, and provides connections to the A580, as well as the A49. As such, this junction would provide the primary access to Parkside from the SRN for traffic arriving from the north, or from the east and west via the A580. Junction 23 also provides the primary motorway access for a number of other existing industrial sites at Haydock. In addition to this there are a number of other proposed developments for distribution and warehousing sites at this location, which would further increase the volume of HGVs and increase the pressure on Junction 23. Junction 23 is already at capacity according to Highways England. It is likely that a preferred solution is that traffic coming from the north to Parkside is encouraged to remain on the M6 exiting at Junction 22 rather than using Junction 23 and coming through Newton le Willows.

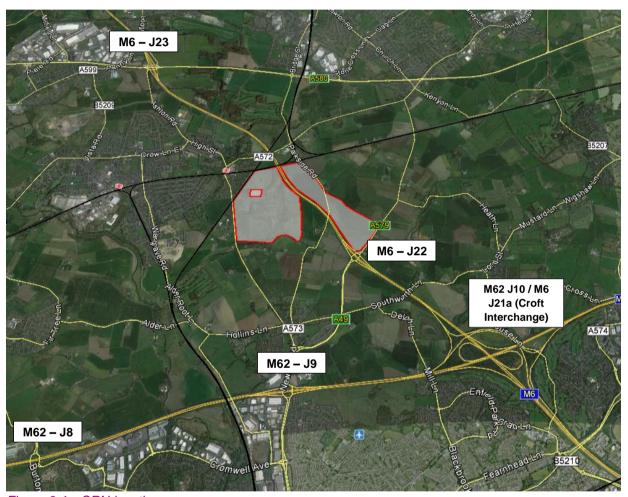


Figure 6.4 - SRN junctions

6.6 Current and Forecast HGV Traffic Flows

Existing traffic flows for the SRN in the vicinity of the Parkside site have been obtained from Highways England's Traffic Information database (TRADS). This database contains traffic count data from Automatic Traffic Count (ATC) sites at various locations on the SRN.

The most recent data available for the SRN in the vicinity of Parkside is from 2014. The annual average weekday traffic (AAWT) and volume of HGVs during that year is summarized in Table 6.2.

Table 6.2 - Current AAWT data

Location	AAWT	No. HGVs
M6 J22-23 NB	60,389	10,810
M6 J22-23 SB	58,163	10,179
M6 J21a-22 NB	59,162	11,182
M6 J21a-22 SB	58,324	12,481
M62 J9-10 WB	56,510	6,781
M62 J9-10 EB	56,934	9,053
M6 J23 SB Exit	8,184	777
M6 J22 SB Exit	7,046	726
M62 J9 WB Exit	9,198	631

An initial estimate for the potential volume of HGV traffic that might be generated by a SRFI site at Parkside has been calculated using the industry standard TRICS database v7.3.1. The trip rates have been determined based on the following criteria:

- Vehicular trip rates for Commercial Warehousing sites;
- Sites in London, Republic of Ireland and Northern Ireland have been excluded;
- Sites smaller than 2,500 sqm Gross Floor Area have been excluded;
- Sites in Town Centre locations have been excluded; and
- Only weekday surveys have been used.

This selection resulted in average daily HGV trip rates as follows:

Arrivals: 0.261 HGVs per 100 sqmDepartures: 0.485 HGVs per 100 sqm

The resultant average daily HGV trip generation for a 100% road-based commercial warehousing site of various sizes, based on these trip rates, is set out in Table 6.2 below.

However, it should be noted that the daily trip rates taken from TRICS could potentially under-estimate the actual trip generation that might be expected at Parkside. This is because the TRICS sample is limited to vehicle counts undertaken between 05:00-21:00. In contrast Parkside is likely to be operated 24 hours a day. Therefore to generate a more robust estimate of the likely trip generation, the higher of the two TRICS figures (departures) has been doubled (representing the fact that all vehicles departing during a 24-hour period must have also arrived and vice versa). This assumption has been used to calculate an estimate of the total number of daily HGV trips (see Table 6.2).

However an assumption has been made in order for a more cautious HGV trip estimate to be made. This is because the TRICS sample is limited to vehicle counts between 05:00-21:00 for some locations. Parkside is likely to be operated 24 hours a day so the assumption taken is that the higher of the two TRICS figures (arrival / departures) is doubled (all vehicles departing must have also arrived and vice versa). This figure has been used as the estimate for total daily HGV trips (see Table 6.3).

Once the total daily trips for each site size had been calculated the trips were allocated between primary and secondary using an assumption of 40/60 split. A trip length assumption of 160km for primary movements and 20km for secondary movements has also been applied and used to calculate the CO² implications for each option.

Table 6.3 – Estimated average daily HGV trip rates and trip generation for a 100% road-based commercial warehousing site

		Daily HGV Trips		Total (incl.	Primary	Secondary
Site Size (sq. ft.)	Arrivals	Departures	TRICS Total	assumption)*	1 minary	3econdary
750,000	182	338	520	676	270	406
1,000,000	242	451	693	902	360	541
1,250,000	303	563	866	1126	451	676
1,500,000	364	676	1040	1352	541	811
1,750,000	424	789	1213	1577	631	946
2,000,000	485	901	1386	1802	721	1,081
2,250,000	546	1014	1559	2028	811	1217
2,500,000	606	1126	1733	2253	901	1352
2,750,000	667	1239	1906	2478	991	1487
3,000,000	727	1352	2079	2703	1081	1622
3,250,000	788	1464	2252	2929	1171	1757
3,500,000	849	1577	2426	3154	1262	1892
3,750,000	909	1690	2599	3379	1352	2028
4,000,000	970	1802	2772	3605	1442	2163
4,250,000	1031	1915	2946	3830	1532	2298
4,500,000	1091	2028	3119	4055	1622	2433

6.6.1 Impact of Rail Movements on HGV Traffic Flows

Once the total traffic movements for a road based site were finalised the impact of including rail movements into the site was assessed.

Our assumption is that one freight train saves 40 HGV primary "trunk" haul movements²⁰. However none of the secondary movements, i.e. Regional Distribution Centre to other local warehouses or direct to stores would be achieved by rail, these would still need to be done by road. There is also a need for the "last leg" road movements. We have called these "primary local" movements. This is where some of the containers are unloaded from the train and then taken an average of 20kms to National/Regional Distribution Centres off the Parkside site.

An example where this methodology has been applied is shown in Table 6.4. The example is for a 750,000 square foot site that receives three trains a day.

Table 6.4 – Broad traffic generation – Option 1

		Daily HGV Trips			
Site Size		Primary	Primary - Local	Secondary	Total (incl. assumption)
	Road based	270	0	406	676
750,000 sq. ft.	Road and Rail (3 trains a day)	150	113	406	668

²⁰ Eurotunnel, 2016

AECOM

84

The key impact here is that compared to a road based solution, a road and rail based solution does not radically change HGV movements in the vicinity of the terminal, but does have a dramatic effect on long distance movements. The example in Table 6.3 removes 120 primary movements per day. This indicates that rail trunk haul services result in a saving of significant numbers of HGVs on the M6 and other parts of the Strategic Road Network.

The HGV movement comparisons for the road based and a road and rail based site options are presented in Chapter 8.

6.7 Summary of Highway Access Issues

The road access to the site at present is constrained by the reliance on a single access junction, which connects to a single-carriageway road, the A49, which also serves a number of residential properties. Despite the presence of the M6 immediately adjacent to the site, the driving route to access the motorway network is approximately 3 km to both the north and the south.

Figure 6.5 - Three junctions with capacity issues in Winwick

Although both of these junctions are scheduled to be upgraded as part of the Smart Motorway scheme, there are a number of proposed large developments adjacent to both junctions that would increase the pressure on the SRN at these locations as and when they are brought forward. Adjacent to Junction 9, M62 the Peel Hall proposed development will consist of around 1,400 new homes. Although there is potential for junction improvement works at Junction 9 to be developed as a result of this scheme, it would not necessarily create sufficient extra capacity to cater for additional HGV trips that might be generated by a 1,000,000+ sq. ft. Parkside development.

"There may be an issue of increasing traffic on the local network – however we need to think strategically. If Parkside doesn't get built then all of this traffic will be on the road!"

UK Rail Freight Operator

Likewise, there is potential for future junction improvement works to come forward at M6 Junction 23, as a result of a number of proposed developments in Haydock. As with M62 Junction 9, however, any spare capacity is likely to be taken up by background growth and committed development trips.

Finally, as noted above, the proximity of Croft Interchange, M6 Junction 22, and M62 Junction 9 means that there can be issues with weaving traffic between these junctions.

An initial estimate of the likely trip distribution from Parkside would indicate that around 85% of trips would travel south along the A49, to access the SRN at M62 Junction 9. This route passes through three junctions in Winwick – A49 / Hollins Lane, A49 / Golbourne Road, and A49 / Winwick Link Road, which all presently experience congestion at peak periods.

It is likely that junction improvement works would be required at all these junctions to accommodate any additional traffic from Parkside. However, even with junction improvement works, a single access onto the A49 is unlikely to be able to support a site at the larger end of the options presented in Table 6.2 above, particularly if the access to the SRN is to be via M62 Junction 9 and M6 Junction 23. A reliance on these junctions to provide access to the SRN is likely to be a sub-optimal solution, not only due to the wider issues summarised above, but also because the volume of HGV traffic that would pass through the residential areas of Winwick and Newton-le-Willows in that scenario is likely to result in local objections.

Public Transport and Active Travel

07

7. Public Transport and Active Travel

7.1 Introduction

As part of this component of Stage 2, AECOM has undertaken an assessment of existing public transport services and active travel routes in the study area. From understanding this baseline situation, any gaps or opportunities in the network can be highlighted in anticipation of demand from the Parkside development. Where new or extended public transport services and improvements to the active travel network are considered outline costs are provided. AECOM has held initial discussions with Merseytravel and St. Helens Transport Policy Team as part of the consideration of options at a Workshop.

7.2 Public Transport Services

The existing bus and rail network in the local area and associated services are outlined within the sections below.

7.2.1 Bus Network and Services

Figure 7.1 illustrates the existing bus services in operation in the vicinity of the proposed site. It can be seen that there are three key services operating within close proximity to Parkside (No. 22, No. 34 and No. 360). AECOM has reviewed the frequency of these services with Figure 1.1 illustrating thicker lines for higher frequency services. At present there are bus stops located along the A49 to the west of the site and along the A572 to the north of the site.

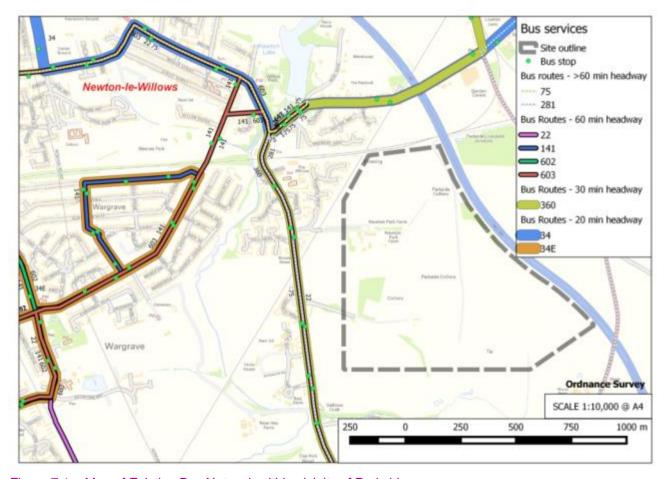


Figure 7.1 – Map of Existing Bus Network within vicinity of Parkside

Table 7.1 below provides further detail on the operation of the bus services within close proximity to the site. It can be seen that the site is relatively well served by bus Monday-Saturday; however, there is just one hourly service available on a Sunday and this is during core hours and only between Warrington and Earlestown.

The Parkside site will be in operation 7 days a week and is likely understood to have core shift patterns of 6am-2pm, 2pm-10pm and some on a night shift 10pm-6am. It can be seen that the existing timings of bus services would not be able to accommodate employees starting at 6am and limited options are available for those staff finishing shifts at 10pm. So potentially earlier and later services could be considered.

Table 7.1 – Bus Services within close proximity to Parkside

	Bus Services within close proximity to the Site						
Service No.	Route	Operator	Frequency	First/Last Service			
No. 22/22E	Warrington Interchange - Vulcan, via Winwick & Newton-le- Willows (22E Warrington – Earlestown)	Network Warrington	Hourly ²¹ (Mon-Sun)	Departing Warrington 07:25 until 22:10 (*to Earlestown only, services to Vulcan are within core/peak hours only) (Mon-Fri) 07:43 until 23:10 (*Sat) and 08:40 until 17:20 (Sun services to Earlestown only)			
No. 34	St. Helens to Leigh via Parr, Earlestown and Newton-le-Willows	Arriva Bus	Every 20 mins (Mon-Sat)	Departing St. Helens 06:25 until 23:25 (Mon-Fri) 07:05 until 23:25 (Sat)			
No. 360	Warrington-Wigan via Winwick, Newton, Golborne and Platt Bridge	Arriva Bus	Every 30 mins Mon-Sat)	Departing Warrington 05:56 until 18:51 (Mon- Fri) 08:17 until 18:27 (Sat)			

Bus Network and Service Issues

- Only one hourly service on Sunday's site operation will be 7 days.
- Some services only run the full timetable during core hours.
- The existing services are not adequate to cover the anticipated shift patterns fully, i.e. services to meet 6am start times and 10pm finish times.

7.2.2 Rail Network and Services

Figure 7.2 identifies the rail network, stations and associated services within close proximity to the proposed site. It can be seen that Newton-le-Willows Station is located approximately 1 mile to the north west of the site, a reasonable walking distance for commuting. Newton-le-Willows station is situated on the northern route of the Liverpool to Manchester Line and the North Wales Coast Line and as such has both a Manchester and Liverpool services platform. The station benefits from relatively high frequency services and these can be seen highlighted on Figure 7.2. The station benefits from cycle parking, a ticket office and ticket machines accepting cards or cash, however, there are limited passenger facilities i.e. a lack of toilets, waiting rooms or refreshments/shop. Earlestown Station is also identified on Figure 7.2, the only other additional service available at this station is the Northern Rail Liverpool-Warrington service (hourly Monday-Saturday).

²¹ In some cases there is more than an hour between services. AECOM

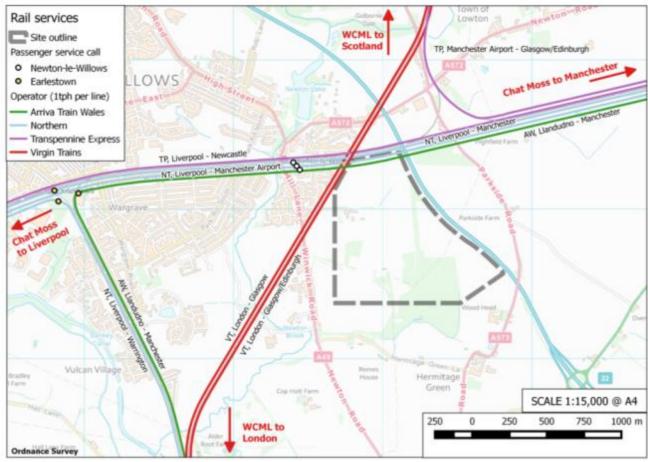


Figure 7.2 – Map of Rail Network within vicinity of Parkside

AECOM has reviewed further details of the rail services operating via Newton-le-Willows and these are shown in Table 7.2. It can be seen that there is a good frequency of direct services to Manchester and Liverpool seven days a week with slightly less frequent service to North Wales. Access to Chester is relatively good however; passengers must change here for services on a Sunday. In assessing the service options against the expected staff shift patterns whilst the journey is viable from Liverpool it is not possible to arrive at the site for a 6am start from Manchester by rail under the current timetabling. On Sundays the early shift additionally becomes an obstacle for those travelling from Liverpool to the site.

Table 7.2 – Rail services operating via Newton-le-Willows Station

Table 7.2 – Itali services o	Rail Services via Newton-le-Willows Station						
Route	Operator	Frequency First/Last Servic					
Liverpool Lime St – Manchester Victoria	(Northern)	Hourly (Mon-Sun)	Departing Liverpool 05:20 until 23:19 (Mon- Sat) 09:01 until 20:12 (Sun)				
Liverpool Lime St – Manchester Airport	(Northern)	Hourly (Mon-Sun)	Departing Liverpool 03:38 until 17:50 (Mon- Fri and until 20:16 Sat ²²) and 08:12 until 23:15 (Sun)				
Manchester Piccadilly – Llandudno via Chester	(Arriva Trains Wales)	Hourly (Mon-Sun) Sunday services Manchester Piccadilly - Chester only, change at Chester for Llandudno	Departing Manchester 05:33 until 17:50 (last service to Llandudno) services run to Chester until 23:14 (Mon-Sat) 07:28 until 23:25 (Sun)				

 $^{^{\}rm 22}$ Note that services run later to Manchester Oxford Road and Manchester Piccadilly. AECOM

Rail Network and Service Issues

- Limited facilities for passengers at Newton-le-Willows station. Inadequate for a higher level of demand forecast as part of the Parkside development.
- Current timetabling does not allow for expected shift patterns to be met, i.e. limitations on certain services to reach/depart Parkside 7 days a week at expected shift times.

7.2.3 Gap Analysis – Challenges and Opportunities

Committed improvements to existing rail services and recent electrification is expected to increase demand on the line through Newton-le-Willows Station. Additionally housing and economic growth in the Warrington area will apply additional pressure on the existing network and associated services. Key travel to work movements within the Parkside area are forecast to increase to/from Ashton-in-Makerfield, Wigan, Warrington, Manchester, Liverpool and St. Helens. The existing network in terms of provision of public transport services by bus and rail is unlikely to be adequate for this forecast increase in demand.

It is known that at the December 2017 timetable change, it is forecast that six trains per hour (off peak) will be utilising the Chat Moss line past the Parkside site. Transpennine Express is to divert the existing Liverpool Lime Street to Scarborough service to the Chat Moss route. This will result in two TPE trains per hour passing the site. Northern will operate an hourly stopper service between Liverpool Lime Street and Manchester Airport. The hourly Warrington Bank Quay – Liverpool Lime Street service will continue to operate via Earlestown. Two new hourly "Northern Connect" services will operate between Liverpool/Chester and Leeds via Manchester and the Calder Valley. The current hourly Transpennine Express service operating via the east to north Parkside-Lowton curve to the east of the site will be replaced by an hourly Northern Connect service between Manchester and Cumbria. Arriva Trains Wales will continue to operate their hourly North Wales-Chester-Manchester service, with peak hour additional services.

Whilst there will also be additional rail empty coach stock and other non-passenger services, it is not foreseen that these will deviate in the main from the existing principal axis of movement (i.e. there will be no major change in the usage of the Newton le Willows-Lowton Junction chord).

These committed improvements to rail services will assist in meeting forecast demand on the line for passenger services. The existing bus network however, needs modification to provide a viable option for travel to/from Parkside for commuters.

7.2.4 Identification of Options

Newton Interchange

One option for consideration to improve bus service provision would be an improved interchange facility at Newton-le-Willows station. Newton-le-Willows station is well placed and relatively well served by rail, however, the connecting bus services are poor. Rail services will be improved (journey times reduced) through the electrification programme of the Liverpool-Manchester lines and the committed increases in service provision outlined above, however, the 'last mile' leg of the journey could be currently off putting to many employers/employees.

As part of plans to improve Newton le Willows Station a new Interchange and Park & Ride facility is to be developed. A Park & Ride facility at Newton-le-Willows station would allow employees arriving by rail and road to interchange to bus for a short journey to the site itself. The service would act as a shuttle service, i.e. not stopping en-route and, with a timetable designed around shift patterns, this would be attractive and efficient for employers and employees.

Timetabling between bus and rail should be reviewed to ensure that interchange opportunities are available and are as efficient for the passenger as possible.

Station facilities e.g. new/improved ticket office and waiting areas with better access facilities and the introduction of step free access to and between platforms should be considered. These improvements will make the station environment more attractive to passengers and better cater for the forecast significant increase in demand using the station facilities.

Enhanced cycle parking provision and a pick-up and drop-off point for taxis at the station would make the interchange more appealing for passenger use.

St. Helens will need to explore funding opportunities for these investments. There may be the potential to utilise developer funding for this infrastructure. However there is already local support for these recommendations shown in the Newton-le-Willows Interchange Full Business Case (2014)²³ developed by Merseytravel. In summary, the scheme provides for:

- A new subway
- Lifts and staircases to subway and platform level, to provide a Disability Discrimination Act (DDA)compliant access throughout;
- A new ticket office provided on the south side of the railway line;
- A new bus interchange adjacent to the new ticket office;
- An expanded car park with space for up to 440 vehicles, with appropriate provision for blue badge holders;
- Enhanced cycle parking provision;
- Pick-up / drop-off point and facility for taxis within the car park area; and
- Enhanced waiting facilities on both platforms.

Bus Timetabling and Routing amendments

Other options which could be considered relatively inexpensively are re-routing of existing bus services and extending the service timetables to meet forecast shift patterns. There could be consideration of existing bus services entering the site to provide an enhanced door-to-door service for employees. AECOM recommends discussion with the bus operators and consultation with the Public Transport Team to assess the appetite and test the market for these options.

7.3 Active Travel Routes

AECOM has reviewed the network of cycle routes and 'walkable routes' within the vicinity of the proposed site.

7.3.1 Cycle Network

St. Helens Council has provided AECOM with a shapefile identifying the existing cycle network and committed new routes within the area; these can be seen illustrated on Figure 7.3. It can be seen that whilst there is one continuous long distance route (the Sankey Valley Trail) within the vicinity of the local area there is little opportunity to access the site via this route due to severance caused by the West Coast Mainline. There are just two points to access the immediate area to the site via the Sankey Trail through Alder Lane or Old Alder Lane. There are a few other local routes within relative proximity to the site which are traffic free; however these are not part of the National Cycle Network and are fragmented, i.e. there is a lack of an integrated network of routes.

7.3.2 Walkable Routes

Routes which lend themselves to walking have also been plotted with the cycle network to establish the existing active travel route offer in the study area, see Figure 7.3. The identified walkable routes consist of public rights of way (PRoW), shared-use paths, green spaces, parks and waterways. Minor roads have also been highlighted as these tend to be quieter routes which increase propensity to walking. AECOM has additionally plotted two areas where it is known that 20mph zones are to be implemented in St Helen's, broadly consisting of the Trees Estate Area and the Whites Estate Area. In limiting traffic speeds there is greater potential to encourage and support the uptake of walking and cycling in these areas.

²³ Merseytravel, Newton-le-Willows Interchange Full Business Case, 2014 - https://www.sthelens.gov.uk/media/3602/cpo_newton_fullbusinesscase.pdf
AECOM

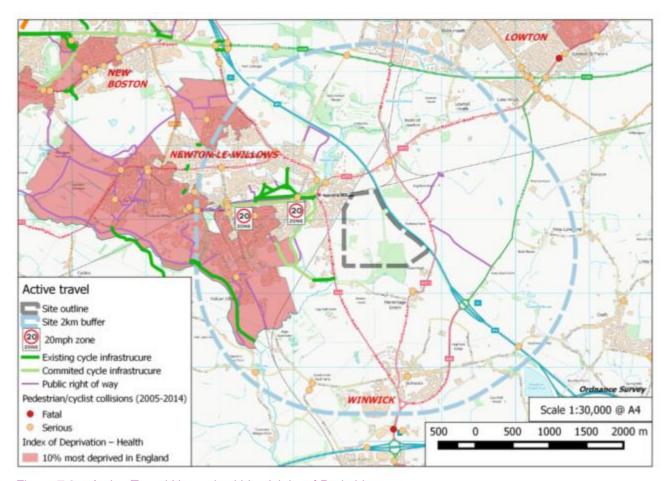


Figure 7.3 - Active Travel Network within vicinity of Parkside

Serious or fatal collisions involving a pedestrian or cyclist have also been plotted on Figure 7.3. It can be seen that over the 9 year period analysed there have been relatively few collisions around the proposed site. The vast majority of collisions have been serious in their severity and have occurred at major junctions. Whilst there is a cluster of collisions in the Earlestown station area, the introduction of 20mph zones should assist in mitigating collision risk. A 2km buffer has been plotted around the proposed site as this represents a reasonable walking distance for commuting. It can be seen that this catchment incorporates the residential areas of Newton-le-Willows, Wargrave and Vulcan Village to the west of the site and Winwick to the south, however, residential developments are relatively sparse to the north and east of the site with the M6 providing severance.

Active Travel Issues

- Fragmented cycle network within vicinity of the proposed site.
- Some severance for walking and cycling caused by the West Coast Mainline and the M6.
- Limited residential areas within a reasonable walking distance to the site for commuting.

7.3.3 Gap Analysis – Challenges and Opportunities

In plotting indices of multiple deprivation for health across the study area it can be seen that there are some areas within close proximity to the proposed site which fall within the top 10% most deprived in England. Providing an integrated active travel network across these areas could assist in improving the health of the local population. The provision of 20mph zones should assist in encouraging walking and cycling through reducing traffic speeds. An increase in the movement of HGVs in the area would be detrimental to encouraging walking and cycling, however, if certain routes are selected for these movements which utilise the main routes to the north and east of the site, this would avoid the residential areas to the west. However it is recognised that this is unlikely for other reasons.

7.3.4 Identification of Options

Potential funding pots for improvements to the active travel network include developer funding captured through Section 106 agreements, the Community Infrastructure Levy and DfT funding such as the upcoming Access Fund.

AECOM recommends discussion with teams within St Helens Council such as the Public Health Team, Road Safety Team and Development Control to explore potential funding pots for improvements to the active travel network.

7.4 Travel Times

AECOM has reviewed typical journey times from key population centres to/from Parkside. Table 7.3 illustrates that at present public transport journey times are largely unfavourable when compared to travel to Parkside by car. Whilst cycling presents a viable option for some it may not be suitable for significant numbers of employees due to the typical journey times and challenging nature of the existing network. Table 7.3 demonstrates that at present the site does not provide a reasonable choice of accessibility for those without access to a private car. Indeed should the site wish to encourage the use of a range of transport options to access the site due to parking availability restrictions or the aim to prevent local congestion at peak times/shift handovers the complete transport offer will need to be addressed.

Table 7.3 - Typical Journey Times by Mode

Тур	Typical Travel Times To/From Parkside* to Key Destinations					
To/From	To/From Car Public Transport Cycle					
Liverpool	30 mins	38 mins (train)	1 hr 39 mins			
Manchester	29 mins	36 mins (train)	1 hr 32 mins			
St. Helens	15 mins	23 mins (train)	34 mins			
Warrington	13 mins	22 mins (1/2 buses)	26 mins			
Wigan	18 mins	43 mins (1/2 buses)	42 mins			

^{* 53°26&#}x27;48.3"N 2°36'28.1"W

Note: Times taken from Google journey planner on 04/05/2016. Note that the car journey times are based on no congestion, public transport includes bus/rail and walking legs and the cycle time is based on the quickest, most direct route.

7.5 Summary

AECOM has reviewed the existing public transport and active travel network in the Parkside study area. There are issues and opportunities presented by the proposed Parkside development on the local network of services and routes. It is clear that there does need to be investment made in local transport provision to enable employees to access the site at the forecast time periods to allow the Parkside development to function. Improvements made to the local network would also benefit the local community in the vicinity of the proposed site in terms of reducing severance, improving accessibility and providing a network more conducive to active travel. The Meresytravel Bus Alliance and St Helens Bus Review process will during its regular review, provide an opportunity to enable bus improvements and better access to Parkside to be achieved.

Options Development 08

8. Options Development

8.1 Introduction

This section outlines options for small (1-3 trains per day), medium (4-8 trains per day) and large (9+ trains per day) logistics and rail freight interchanges. In total 5 options have been developed:

- 1 x Small
- 1 x Medium
- 2 x Large

Initially the methodology used for the economic modelling, CO² emissions assessment and the modal shift benefit assessment that feeds into the options appraisal will be explained. Then each option is outlined and assessed individually. Finally a separate assessment of policy compliance relevant to each of the options is outlined.

8.1.1 Economic Modelling

At this time only initial, indicative modelling has been undertaken in order to assess which options are economically viable. As such it should be noted that these figures will require refinement as the selected option is taken forward. In all cases the revenue and costs of the terminal to 2050 were assessed using 2014 prices. It is important to note further that all costs relating to the financing of the whole site's capital and operating costs were not assessed at this stage.

Only the income and cost of the intermodal terminal itself was assessed as part of this process. Any additional income from warehouse rent or additional services was not included.

Capital Cost Generation

Using industry standard prices for infrastructure, an approximate price range for each option was developed. This included the creation of low and high estimates for trackwork, as accurate pricing would require (for example) better topographical studies to understand the nature of the earthworks required. Similarly, the nature of the site (being a former colliery) means that there is a need for extensive geotechnical work to ascertain the risks to any new built infrastructure on the site and how these, if necessary, can be mitigated. An average cost between the high and low prices was taken as the total capital cost of the terminal, and depreciation was then applied to this value over the lifetime of assets and the terminal.

Operating Cost Generation

Utilising costs from similar terminals across Europe, it is possible to develop an operational cost model for the terminal, covering:

- Labour (including administration, gate staff and equipment operators)
- Equipment Maintenance
- Utilities & Fuel Use by the Terminal (such as road tractors and shunting locomotives)
- IT Costs

When combined with the depreciation costs of individual assets (such as the Rail Mounted Gantry Cranes) and the terminal's civil infrastructure (hardstanding etc.) this produces an indicative assessment of the costs of the terminal over the modelled period.

Income Generation

The income of the terminal was derived from a standard charge of £25 per container lifted, in line with industry norms. A "ramp up" period was built into the modelling process, wherein during the 1st year of operation (assumed to be 2022), only 25% of the expected traffic was delivered, rising to 50% in the 2nd year, 75% in the 3rd year and then reaching 100% of forecast traffic. Conservative assumptions were placed on train utilisation; 60 TEUs were received per train (which were converted into the number of containers for moving in

line with the industry distribution of 20' and 40' containers). In order to add further downward pressure on income to ensure robust conclusions, no increase in TEU numbers were forecast throughout the modelled period after the initial ramp up period. In reality, continued growth in line with population and GDP increases would be expected. As earlier stated, no rental income or additional value from terminal services (such as container storage) were considered at this initial modelling stage.

This means that the figures quoted in this section are erring on the cautious side, however this is prudent given the early stage of the project.

8.1.2 CO₂e Emissions Assessment

To calculate the CO₂e emissions for each option the following methodology has been used. Firstly the km saved for each option when rail movements are used has been calculated. This saving is based on the primary movements that are removed from the Strategic Road Network. A 160km journey length has been assumed for these primary movements. Once the saving has been calculated, a conversion factor of 0.91484kg (DEFRA, 2016) for every km travelled has been applied.

Once the road savings have been calculated the CO_2e emissions associated with the rail movements were calculated using conversion factors (DEFRA, 2016) and netted off the road savings. This provides the CO_2e emissions savings associated with each option.

The notation of CO_2e is used becasuse locomotives and trucks (along with many other emitters) produce a number of green house gasses in addition to carbon dioxide. Each of these gases has a different ability to heat the atmosphere, known as its global warming potential, which assesses this ability in relation to CO_2 . For example, methane has a global warming potential of 4, meaning that its four times more powerful than CO_2 in causing global warming. Therefore emitting 1kg of methane is, in global warming terms, is the same as emitting 4kg of CO_2 . As such, standard practice in assessing greenhouse gas emissions is to convert all GHG emissions into their CO_2 equivalent and therefore allowing studies to present a standard value that accounts for the true impact of those emissions, rather than listing each gas separately.

8.1.3 Mode Shift Benefit Assessment (Sensitive Lorry Miles)

To assess the benefits of a rail-linked logistics interchange over a road based logistics interchange at Parkside, mode shift benefit values have been used. This assessment uses a methodology developed by the Department for Transport that allows estimates of the benefit of removing a lorry mile from the road network in Great Britain to be calculated. This estimate provides a monetised value of the externalities associated with truck movements. The values cover the following externalities:

- Congestion
- Accidents
- Noise
- Pollution
- Greenhouse Gases
- Infrastructure
- Other (roads)
- Taxation
- Rail

In order to do this, it has been necessary to apply assumptions and established methodologies. These are laid out below as part of the calculation process.

Values

All calculations are conducted in line with the methodology of the Department for Transport Modal Shift Benefit Guide, as first determined in 2009²⁴ and updated for 2015 – 2020 in 2014.²⁵ What this means in practice is that all calculations are using 2015 prices to measure the estimated values of externalities in 2020. As the business case progresses, these will be updated as necessary.

²⁴ DfT, Freight Mode Shift Benefits Values Technical Report, (London, 2009) and DfT, Freight Mode Shift Benefits Values User Guide, (London, 2009)

²⁵ DfT, Freight Mode Shift Benefit Values Technical Report: An Update, (London, 2014).

Absolute Vehicle Numbers

Vehicle numbers for this analysis are based on the estimated primary, primary-local and secondary truck movements associated with each of the respective options (see Chapter 8). Primary local trips are the extra primary movements (assumed to be 20km in length) that are generated to transport containers on trunk movements to Parkside to a final destination not located on the Parkside site itself (e.g. Omega or Haydock).

Distance / Routing

The following distance and routing assumptions have been made for primary and primary – local movements:

Table 8.1 – Distance and routing for mode shift benefit assessment

	Average Journey		Average	Routing	
Movement	Average Journey Distance (km)	Highway (high congestion)	Highway (low congestion)	A Road	Other
Primary	160 ²⁶	120	40	-	-
Primary – Local	20	-	-	10	10

For primary movements an average journey of 160km has been assumed. This is the equivalent of a journey from a National Distribution Centre in the Midlands to Parkside where we expect some North West Regional Distribution Centres to be located. This is based on findings for double deck trailer average trip lengths from the Continuous Survey of Road Goods Transport (CSRGT) used as part of a cost-benefit model developed by the Logistics Research Centre at Heriot-Watt University²⁷.

These routing has been broken down into component segments as per the methodology laid out in the Modal Shift Benefit Technical Note, and their consequent values determined, before being multiplied by the number of vehicles movements to calculate the total externalities associated with each option.

 $^{^{26}}$ Double-Deck Trailers: A Cost-Benefit Model Estimating Environmental And Financial Savings - Logistics Research Centre, Heriot-Watt University

Double-Deck Trailers: A Cost-Benefit Model Estimating Environmental And Financial Savings - Logistics Research Centre, Heriot-Watt University

8.2 Option 1

8.2.1 Indicative layout

Figure 8.1 below shows the indicative layout for the small terminal that is capable of handling 3 trains per day. The indicative floor space (square foot) of each warehouse is shown in Table 8.2.

Table 8.2 – Indicative floor space of each warehouse

Warehouse	Square foot (to the nearest 50,000 sq. ft.)
1	200,000
2	200,000
3	200,000
4	150,000
Total	750,000

Figure 8.1 – Indicative Layout – Option 1 (3 trains per day)

8.2.2 Rail access

Access to the site from the rail network is achieved off the Chat Moss line. In order to keep infrastructure costs down only a one directional spur into the site is built, so under this layout trains can only be received entering the site from the west. This enables movements on routes from the west (i.e. Liverpool) to enter the site directly off the Chat Moss line and movements from the South (i.e. Felixstowe, Southampton, London etc.) to enter the site from the West Coast Mainline via the Earlestown Junction. This single directional entrance is likely to cater for the majority of traffic but limits the site's flexibility.

8.2.3 Broad traffic generation

The total floorspace for this option (as outlined in Table 8.1) is 750,000 square foot. The broad traffic generation associated with this size of development is shown in Table 8.3.

Table 8.3 - Broad traffic generation - Option 1

		Daily HGV Trips			
Site Size	Operation	Primary	Primary - Local	Secondary	Total (incl. assumption)
	Road based	270	0	406	676
750,000 sq. ft.	Road and Rail (3 trains a day)	150	113	406	668

Overall it can be seen that there is a reduction in total daily trips of 8. While the overall decrease is small there is a reduction of 120 primary trips per day. This saving comes from our assumption, as outlined in section 6.6.1, that one freight train saves 40 HGV primary "trunk" haul movements. However it is also assumed that none of the secondary movements, i.e. Regional Distribution Centre to other local warehouses or direct to stores would be achieved by rail, these would therefore still need to be achieved by road. This indicates that rail trunk haul services result in a saving of significant numbers of HGVs on the M6 and other parts of the Strategic Road Network.

As well as still having around 150 road based trunk hauls movements there is also a need for the "last leg" road movements called "primary - local". This is where the containers are unloaded from the train and then taken an average of around 20kms to local businesses off of the Parkside site. This could be to industrial parks such as Omega North and South which are situated only 4km from the Parkside site. Omega North provides 3.1 million sq. ft. of mixed offices and distribution. With Omega South providing a further 2.7 million sq. ft. of floorspace for logistics and manufacturing uses²⁸.

8.2.4 Road access

Under this option, it is felt that the A49 may be able to cope with the traffic generated by the site provided some minor junction improvements are done towards the M62. Therefore the previous main entrance to the Colliery would be reinstated. If the floorspace of the site was to be expanded, it is felt that the site access via the A49 entrance would not be feasible.

Indicative costs associated with design and construction of this road layout (not including the cost of land) are outlined in Table 8.4.

Table 8.4 - Indicative costs of road layout - Option 1

	Indicative cost (£)
Preliminaries & Design	£ 353,500
Highway Construction	£ 1,732,500
Temporary Traffic Management	£ 35,000
Box Structure (Tunnel)	£0
TOTAL	£ 2,121,000

²⁸ Miller Developments - http://www.millerdevelopments.co.uk/omega-north.aspx
AFCOM

8.2.5 CO₂e Savings and Mode Shift Benefit

Please see Section 8.6 for a full high level environmental assessment for each of the four development options.

The CO₂e saved by this development due to the introduction of 3 train movements is outlined in Table 8.5.

Table 8.5 - CO₂e saving - Option 1

	CO₂e saved (tonnes)
Daily	22
Annually	6,458

The Modal Shift Benefit (£) associated with the reduction of 120 primary movement per day in the rail and road option in comparison to the road based option is outlined in Table 8.6.

Table 8.6 - Modal Shift Benefit (£) associated with the reduction in primary movement

	Modal Shift Benefit (£)
Daily	£ 8,370
Annually	£ 2,511,000

If the 113 additional 'Primary – Local' trips are included then the Modal Shift Benefit (£) is reduced. Table 8.7 outlines these reduced values. However in reality a proportion of these 'primary – local' trips would be to companies based on the Parkside site, therefore these movements would not affect the local road network.

Table 8.7 - Modal Shift Benefit (£) associated with the reduction in primary movement

	Modal Shift Benefit (£)
Daily	£ 6,230
Annually	£ 1,869,075

8.2.6 Economic viability assessment

Option 1 does not offer promising economic viability. 3 trains per day does not provide enough container throughput to cover the operating costs of a rail mounted gantry crane-based terminal. As such, this option is unlikely to recoup its initial capital expense and would require an ongoing subsidy to ensure continued operation. However cheaper build costs could be considered by using refurbished sections of track etc.

While the operation of a reachstacker instead of a rail mounted gantry crane is advantageous in terms of initial capital cost, the operational costs are slightly higher than for a rail mounted gantry crane. Therefore the operation of a reachstacker does not help to make option 1 more economically viable. Table 8.8 outlines the costs associated with the option for both a rail mounted gantry crane and a reachstacker.

Table 8.8 – Summary economic viability – Option 1 (RMG and reachstacker)

Handling Equipment	Initial Capital Cost	Annual Operating Costs	Annual Income (3 trains per day)
Rail mounted gantry crane	£15,101,036	£2,119,633	£1,665,000
Reachstacker	£12,162,636	£2,187,354	£1,665,000

The high capital costs of the large amount of trackwork required (it composes the majority of the trackwork required for option 2) help to make this option economically unviable, and as such it is not developed further in this study. Selected snapshots of the terminal's modelled cashflow when using an RMG for handling equipment are shown in Table 8.9.

Table 8.9 – Summary cashflow – Option 1 (RMG)

SMALL TE	ERMINAL	25%	50%	75%	100%	100%	100%	100%	100%
	2021	2022	2023	2024	2025	2030	2035	2040	2045
Revenue		£ 416,250	£ 832,500	£ 1,248,750	£ 1,665,000	£ 1,665,000	£ 1,665,000	£ 1,665,000	£ 1,665,000
	-		-£	-£	-£				-£
Cost	£15,101,036	-£ 1,299,530	1,584,824	1,890,490	2,119,633	-£ 2,119,633	-£ 2,119,633	-£ 2,119,633	2,119,633
Net		-£ 883,280	-£ 752,324	-£ 641,740	-£ 454,633	-£ 454,633	-£ 454,633	-£ 454,633	-£ 454,633
	-£		-£	-£	-£	-£	-£	-£	-£
Cumulative:	15,101,036	-£ 15,984,315	16,736,639	17,378,379	17,833,012	20,106,180	22,379,347	24,652,515	26,925,682

(Percentage figures apply to the ramp up of the use of the terminal as outlined under 'Income Generation')

8.3 Option 2

8.3.1 Indicative layout

Figure 8.2 below shows the indicative layout for a medium terminal that is capable of handling 8 trains per day. The indicative floor space (square foot) of each warehouse is shown in Table 8.10.

Table 8.10 - Indicative floor space of each warehouse - Option 2

Warehouse	Square foot (to the nearest 50,000 sq. ft.)		
1	250,000		
2	200,000		
3	300,000		
4	100,000		
5	150,000		
Total	1,000,000		

Figure 8.2 – Indicative Layout – Option 2 (8 trains per day)

8.3.2 Rail access

Rail access is provided from the Chat Moss line and in this option rail access is available from both west and east facing junctions which effectively offers a four-directional approach network. This maximizes the flexibility of the site. There are two handling tracks and one runaround loop in the core intermodal terminal providing sufficient capacity to handle 8 trains per day.

8.3.3 Broad traffic generation

The total floor space for this option (as outlined in Table 8.10) is 1,000,000 square foot. The broad traffic generation for a road based and road and rail based solution associated with this size of development is shown in Table 8.11.

Table 8.11 – Broad traffic generation – Option 2

		Daily HGV Trips				
Site Size	Operation	Primary	Primary - Local	Secondary	Total (incl. assumption)	
1,000,000 sq	Road based	361	0	541	902	
ft.	Road and Rail (8 trains a day)	40	300	541	881	

Overall it can be seen that there is a decrease of 21 trips in total. In this option 320 primary movements are saved as a result of the 8 trains per day. An additional 300 'primary – local' movements are required to serve the 8 trains per day.

8.3.4 Road access

Due to the floorspace of the development, access via the A49 is not feasible for HGV's. This access will however still be reinstated for private car, public transport and active travel. Access for HGV's will be achieved from the A573 via a new access road under the M6.

Indicative costs associated with design and construction of this road layout are outlined in Table 8.12.

Table 8.12 - Indicative costs of road layout - Option 2

	Indicative cost (£)
Preliminaries & Design	£ 1,778,000
Highway Construction	£ 5,118,324
Temporary Traffic Management	£ 105,000
Box Structure (Tunnel)	£ 2,500,000
TOTAL	£ 9,501,324

8.3.5 CO₂e Savings and Mode Shift Benefit

The CO₂e saved by this development due to the introduction of 8 train movements is outlined in Table 8.13. Please see Section 8.6 for a full high level environmental assessment for each of the four options.

Table 8.13 – CO₂e saving – Option 2

	CO ₂ e saved (tonnes)
Daily	42
Annually*	12,515

The Modal Shift Benefit (£) associated with the reduction of 320 primary movement per day in the rail and road option in comparison to the road based option is outlined in Table 8.14.

Table 8.14 - Modal Shift Benefit (£) associated with the reduction in primary movement

	Modal Shift Benefit (£)
Daily	£ 22,320
Annually*	£ 6,696,000

If the 300 additional 'Primary – Local' trips are included then the Modal Shift Benefit (\mathfrak{L}) is reduced. Table 8.15 outlines these reduced values. However in reality a proportion of these 'primary – local' trips would be to companies based on the Parkside site, therefore these movements would not affect the local road network.

Table 8.15 - Modal Shift Benefit (£) with "Primary – Local" movements included

	Modal Shift Benefit (£)
Daily	£ 16,614
Annually	£ 4,984,200

8.3.6 Economic viability assessment

The medium terminal has only got marginally increased infrastructure costs over the small and as can be seen, its annual income with 8 trains per day exceeds the annual operating costs of the terminal, ensuring long-term viability.

Table 8.16 - Summary economic viability of rail terminal- Option 2

Initial Capital Cost Annual Operating Costs		Annual Income (8 trains per day)		
24,994,084	£3,323,799	£4,440,000		

However, the high capital costs still mean that the terminal is cumulatively in the red for a number of years, although this is finally cleared by 2046. It is worth re-iterating however that this estimate is based upon a high estimate of initial capital outlay and a conservative income stream, and that this date may well be brought further forward in future assessments due to more detailed work being undertaken or in reality through growth in container throughput and increased utilisation of intermodal rail services. Selected snapshots of the modelled cashflow are shown in Table 8.17.

Table 8.17 - Summary cashflow - Option 2

Opt	ion 2	25%	50%	75%	100%	100%	100%	100%	100%
	2021	2022	2023	2024	2025	2030	2035	2040	2045
Revenue		£1,110,000	£2,220,000	£3,330,000	£4,440,000	£4,440,000	£4,440,000	£4,440,000	£4,440,000
Cost	-£24,994,084	-£1,446,905	-£1,839,661	-£2,824,436	-£3,323,799	-£3,323,799	-£3,323,799	-£3,323,799	£3,323,799
Net		-£336,905	£380,339	£505,564	£1,116,201	£1,116,201	£1,116,201	£1,116,201	1,116,201
Cumulative:	-£ 24,994,084	-£ 25,330,989	-£ 24,950,650	-£ 24,445,086	-£ 23,328,885	-£ 17,747,881	-£ 12,166,876	-£ 6,585,871	-£ 1,004,867

(Percentage figures apply to the ramp up of the use of the terminal as outlined under 'Income Generation')

Given the assumptions used in generating this data, this is likely to be a conservative estimate which underplays the terminal's plausible cashflow. It is therefore recommended for further, more detailed study.

8.4 **Option 3**

8.4.1 Indicative layout

Figure 8.2 shows the indicative layout for a large terminal that is capable of handling 10 trains per day. The indicative floor space (square foot) of each warehouse is shown in Table 8.18.

Table 8.18 - Indicative floor space of each warehouse - Option 3

Warehouse	Square foot (to the nearest 50,000 sq. ft.)
1	250,000
2	200,000
3	300,000
4	250,000
5	250,000
Total	1,250,000

Figure 8.3 – Indicative Layout – Option 3 (10 trains per day)

8.4.2 Rail access

Rail access is provided from the Chat Moss line and in this option rail access is available from both west and east facing junctions which effectively offers a four-directional approach network. This maximizes the flexibility of the site. Three handling tracks and run around loop are available in the core intermodal terminal to allow for the extra capacity required. An additional 500m handling track siding is also provided to the east of the M6. It is felt that an alternative sector such as the automotive industry may suit this handling area.

8.4.3 Broad traffic generation

The total floor space for this option (as outlined in Table 8.18) is 1,250,000 square foot. The broad traffic generation for a road based and road and rail based solution associated with this size of development is shown in Table 8.19.

Table 8.19 - Broad traffic generation - Option 3

		Daily HGV Trips			
Site Size	Operation	Primary	Local	Secondary	Total (incl. assumption)
1,250,000 sq.	Road based	450	0	676	1,126
ft.	Road and Rail (10 trains a day)	51	375	676	1,101

Overall it can be seen that there is a decrease in total daily trips of 25. Due to the operation of 10 trains per day there is a large saving of 400 primary movements which will be removed predominately from the M6. However there are 375 additional 'primary – local' movements that will affect the local network.

8.4.4 Road access

Due to the floorspace of the development access via the A49 is not feasible for HGV's. This access will however still be reinstated for private car, public transport and active travel. Access for HGV's will be achieved from the A573 via the new access road under the M6.

Indicative costs associated with design and construction of this road layout are outlined in Table 8.20.

Table 8.20 - Indicative costs of road layout - Option 3

	Indicative cost (£)
Preliminaries & Design	£ 1,655,000
Highway Construction	£ 5,670,000
Temporary Traffic Management	£ 105,000
Box Structure (Tunnel)	£ 2,500,000
TOTAL	£ 9,930,000

8.4.5 CO₂e Savings and Mode Shift Benefit

The CO_2 e saved by this development due to the introduction of 10 train movements is outlined in Table 8.21. Please see Section 8.6 for a full high level environmental assessment for each of the four development options.

Table 8.21 – CO₂e saving – Option 3

	CO ₂ e saved (tonnes)
Daily	49
Annually*	14,820

The Modal Shift Benefit (£) associated with the reduction of 400 primary movement per day in the rail and road option in comparison to the road based option is outlined in Table 8.22.

Table 8.22 - Modal Shift Benefit (\mathfrak{L}) associated with the reduction in primary movement

	Modal Shift Benefit (£)
Daily	£ 27,900
Annually*	£ 8,370,000

If the 375 additional 'Primary – Local' trips are included then the Modal Shift Benefit (\mathfrak{L}) is reduced. Table 8.23 outlines these reduced values. However in reality a proportion of these 'primary – local' trips would be to companies based on the Parkside site, therefore these movements would not affect the local road network.

Table 8.23 - Modal Shift Benefit (£) with 'Primary - Local' movements included

	Modal Shift Benefit (£)
Daily	£ 20,768
Annually	£ 6,230,250

8.4.6 Economic viability assessment

The large terminal is economically sound in terms of its operation however with the considerably higher initial capital costs it takes a long time to pay off. As such the terminal will not have paid off its capital costs entirely until 2057. This is 11 years later than option 2.

Table 8.24 - Summary economic viability of rail terminal- Option 3

Initial Capital Cost	Annual Operating Costs	Annual Income (10 trains per day)	
£35,642,306	£4,450,752	£5,550,000	

However, this is built upon the assumption of revenue only being achieved through the movement of containers on and off a train. In reality other services can be offered to gain additional revenue allowing the initial capital cost to be recouped sooner. Selected snapshots of the terminal's modelled cashflow are in Table 8.25.

Table 8.25 - Summary cashflow - Option 3

Opt	ion 3	25%	50%	75%	100%	100%	100%	100%	100%
	2021	2022	2023	2024	2025	2030	2035	2040	2045
Revenue		£ 1,387,500	£ 2,775,000	£ 4,162,500	£ 5,550,000	£ 5,550,000	£ 5,550,000	£ 5,550,000	£ 5,550,000
Cost	-£ 35,642,306	-£ 1,584,378	-£ 2,514,173	-£ 3,773,926	-£ 4,450,752	-£ 4,450,752	-£ 4,450,752	-£ 4,450,752	-£4,450,753
Net		-£ 196,878	£ 260,827	£ 388,574	£ 1,099,248	£ 1,099,248	£ 1,099,248	£ 1,099,248	£ 1,099,247
0 1 "	-£ 35,642,306	-£	-£	-£	-£	-£	-£	-£	-
Cumulative:		35,839,184	35,578,357	35,189,782	34,090,535	28,594,297	23,098,060	17,601,822	£12,105,585

(Percentage figures apply to the ramp up of the use of the terminal as outlined under 'Income Generation')

As such this option is suitable for further study, should factors aside from economic viability support its implementation.

8.5 Option 4

8.5.1 Indicative layout

Figure 8.4 shows the indicative layout for a large terminal that is capable of handling 12 trains per day. The indicative floor space (square foot) of each warehouse is shown in Table 8.26. For this option it has been assumed that the land to the east of the M6 is constrained only by the Wigan boundary and the A579.

Table 8.26 - Indicative floor space of each warehouse - Option 4

Warehouse	Square foot (to the nearest 50,000 sq. ft.)		
1	350,000		
2	200,000		
3	300,000		
4	350,000		
5	300,000		
6	200,000		
7	250,000		
8	350,000		
9	500,000		
10	300,000		
11	200,000		
12	200,000		
13	150,000		
14	300,000		
15	500,000		
16	300,000		
Total	4,500,000		

Figure 8.4 - Indicative Layout – Option 4 (12 trains per day)

8.5.2 Rail access

Rail access is provided from the Chat Moss line and in this option rail access is available from both west and east facing junctions which effectively offers a four-directional approach network. This maximizes the flexibility of the site. In this option the two receptions sidings directly before the core intermodal terminal (east of the M6) will be used to accept trains approaching from the south and west. These reception sidings are capable of holding a 775m train clear of the points accessing the site. The two reception siding to the west of the M6 will be used to accept trains approaching from the north and south and can also hold a 775m train clear of the points. However trains approaching from these directions will need to be manoeuvred into the core handling area by either running the locomotive around and pulling the train in, or reversing it.

This means that at no point is access to the site blocked enabling trains to arrive from the north and east while a train that has arrived from the south or the west is waiting to be accepted into the handling tracks (or vice versa).

In this option the core handling area is able to serve four full length 775m trains at one time with one of the handling tracks left clear to allow locomotives to run around where required. This provides an operational benefit and saves time as trains do not need to be split for handling.

8.5.3 Broad traffic generation

The total floor space for this option (as outlined in Table 8.26) is 4,500,000 square foot. The broad traffic generation for a road based and road and rail based solution associated with this size of development is shown in Table 8.27.

Table 8.27 – Broad traffic generatio	n – Option 4
--------------------------------------	--------------

		Daily HGV Trips			
Site Size	Operation	Primary	Local	Secondary	Total (incl. assumption)
4,500,000 sq.	Road based	1,622	-	2,433	4,055
ft.	Road and Rail (12 trains a day)	1,142	450	2,433	4,025

Overall it can be seen that there is a reduction in total daily trips of 30. Due to the operation of 12 trains per day there is a large saving of 480 primary movements which will be removed predominately from the M6. However there are 450 additional 'primary – local' movements that will affect the local network.

8.5.4 Road access

Due to the floorspace of the development (4,500,000 sq. ft.) access for HGVs via the A49 is not suitable due to the traffic volumes. However this access will still be reinstated for private car, public transport and active travel.

The main site entrance for HGVs will be off the A579 between warehouse 15 and 16 (Figure 8.4). A new demand responsive signalised junction will be required due to the high traffic numbers, however further work will be required to understand the exact specification of the junction. Access will also be provided from the north off the newly aligned A573. However like the access from the A49 this will be reserved for private car, public transport and active travel. Another new junction is also required to link the newly aligned A573 to the A579. However due to lower traffic volumes a roundabout may be more suitable. However further work will be required to understand the exact specification of the junction.

A tunnel under the M6 is required to link the site to the east and west of the M6 (Figure 8.4). This tunnel has been positioned away from the Chat Moss railway line to reduce the challenges and conflicts

Indicative costs associated with design and construction of this road access are outlined in Table 8.28.

Table 8.28 - Indicative costs of road layout - Option 4

	Indicative cost (£)
Preliminaries & Design	£4,929,854
Highway Construction	£9,044,269
Temporary Traffic Management	£105,000
Box Structure (Tunnel)	£2,500,000
Roundabout (Linking A573 and A579)	£3,000,000
Demand responsive signalised junction (A579 and Parkside site)	£5,000,000
Duelling of A579 to M6 J22	£5,000,000
TOTAL	£29,579,122

8.5.5 CO₂e Savings and Mode Shift Benefit

The CO₂e saved by this development due to the introduction of 12 train movements is outlined in Table 8.29.

Table 8.29 - CO₂e saving - Option 4

	CO ₂ e saved (tonnes)
Daily	54
Annually*	16,200

The Modal Shift Benefit (£) associated with the reduction of 480 primary movement per day in the rail and road option in comparison to the road based option is outlined in Table 8.30.

Table 8.30 - Modal Shift Benefit (£) associated with the reduction in primary movement

	Modal Shift Benefit (£)
Daily	£ 33,480
Annually*	£ 10,044,000

If the 450 additional 'Primary – Local' trips are included then the Modal Shift Benefit (\mathfrak{L}) is reduced. Table 8.31 outlines these reduced values. However in reality a proportion of these 'primary – local' trips would be to companies based on the Parkside site, therefore these movements would not affect the local road network.

Table 8.31 - Modal Shift Benefit (£) with "Primary - Local" movements included

	Modal Shift Benefit (£)
Daily	£ 24,921
Annually	£ 7,476,300

8.5.6 Economic viability assessment

The large terminal is economically sound, with the higher throughput making better use of the terminal equipment. As such the terminal will have paid off its capital costs entirely by 2044, 2 years earlier than the option 2.

Table 8.32 - Summary economic viability of rail terminal- Option 4

Initial Capital Cost	Annual Operating Costs	Annual Income (12 trains per day)
£38,899,641	£ 4,766,869	£6,660,000

However, this is built upon the high assumption of 12 trains per day all offering 60 TEU consistently throughout the terminal's lifespan, and this assumption would need to be better tested to ensure a robust context for the operational costs to be calculated from. Selected snapshots of the terminal's modelled cashflow are in Table 8.33.

Table 8.33 - Summary cashflow - Option 4

Option 4	25%	50%	75%	100%	100%	100%	100%	100%	100%
	2021	2022	2023	2024	2025	2030	2035	2040	2045
Revenue		£ 1,665,000	£ 3,330,000	£ 4,995,000	£ 6,660,000	£ 6,660,000	£ 6,660,000	£ 6,660,000	£ 6,660,000
Cost	-£ 39,118,444	-£ 1,697,394	-£ 2,706,219	-£ 4,045,001	-£ 4,766,869	-£ 4,766,869	-£ 4,766,869	-£ 4,766,869	-£ 4,766,869
Net		-£ 32,394	£ 623,781	£ 949,999	£ 1,893,131	£ 1,893,131	£ 1,893,131	£ 1,893,131	£ 1,893,131
Cumulative:	-£ 39,118,444	-£ 39,150,838	-£ 38,527,057	£ 37,577,058	-£ 35,683,927	-£ 26,218,273	-£ 16,752,618	-£ 7,286,964	£ 2,178,690

(Percentage figures apply to the ramp up of the use of the terminal as outlined under 'Income Generation')

As such, this option is suitable for further study, should factors aside from economic viability support its implementation.

8.6 Potential Environmental Impact

This section of the report identifies the broad environmental constraints and opportunities associated with interchange development at the Parkside location. The potential impacts identified are purposefully 'high level', and do not relate to any specific development scenario. However, we have made some assumptions about the potential impacts at different scales of growth when this could be an important factor in the generation of effects..

The following environmental factors are considered in the assessment with a summary of potential impacts outlined in Table 8.34:

- Heritage
- Agricultural land
- Flood risk and water
- Landscape
- Biodiversity
- Air quality and transport
- Amenities
- Climate change

Table 8.34 - Potential environmental impacts

Factor	Potential environmental impacts Potential impacts including mitigation
Heritage	There are several listed heritage assets within or adjacent to the site. This includes the following: St. Oswalds Well Scheduled Ancient Monument, Woodhouse Farmhouse (Grade II), Woodhouse Barn (Grade II) and Huskisson Memorial (Grade II). The extent of impacts upon these assets and their setting would be dependent upon the scale, location and design of development.
	Potential impacts on the setting of these assets are unlikely to be avoidable, but mitigation ought to ensure that the impacts are managed. Vegetation screening, for example, may safeguard the heritage assets by reducing visual permeability to the warehousing and the rail line.
	Expansion of development to the east of the M6 could potentially have a direct effect on the setting of Huckissons Memorial. This may be more difficult to mitigate.
Agricultural land	According to the St. Helens Local Plan Scoping Report the whole site is classified as Grade 3 agricultural land. However, this map is high level. More precise information was gathered in the Environmental Statement 2006 (Table 9.1, page 252) which suggests that of the land classified as having agricultural potential, 19% is categorised as ALC Grade2, 29% as ALC Grade 3a, and 15% as ALC Grade 3b. However, 24% of the whole site is non-agricultural land ²⁹ , and as such development on this area is unlikely to have negative effect. The majority of the north-west corner of the site, and a section of the south-west corner, fall within ALC Grade 2. There is ALC Grade 3a in the west and north and ALC Grade 3b along the eastern edge.
	Expansion of warehousing units to the east of the M6 would also lead to permanent loss of agricultural land associated with three operational farms (Parkside Farm, Rough Farm and Highfield Farm).
	The only way to minimise impacts would be to avoid higher quality agricultural land, and / or compensate for loss by contributing to agricultural improvements elsewhere in the borough or supporting allotment creation.
Flood risk/ Water	The whole western part (of the M6) of the site area is located within Flood Zone 1 ³⁰ apart from the southern edge which borders a drainage ditch. This border is located within Flood Zone 2.
	The increase in impermeable surfaces associated with development is likely to increase surface run off, however mitigation is likely to be effective in managing flood risk.
	Flood risk is unlikely to be a major issue. SUDs could help to reduce surface water run-off.
	Fluvial flood rist to the east of the M6 is negligible. However, there are tracts of land at risk of surface water flooding to the east of the A579.
	Land to the east of the M6 is located within a Nitrate Vulnerable Zone. Change of land use from agricultural could therefore have positive effects in terms of reducing the likelihood of nitrates leaching into groundwater or surface water run off (provided that construction did not disturb nitrates already gathered in the soils). Though warehousing could generate pollution incidents, it is typically easier to remedy a point-specific source since its point of origin can be relatively easily identified.
Landscape	The site (to the west of the M6) comprises of grass, shrubbery and woodland of various typologies and densities ³¹ . There is a section of previously developed, brownfield land, and agricultural land which is currently being used in the north-east section of the site. The site can be considered as urban fringe.
	The whole site is located within Green Belt land. Effects on the landscape are probable, but coalescence unlikely to be a major issue with structural landscaping.
	Effects upon landscape character would depend upon the precise scale, location and design of development, with larger buildings more likely to intrude. The effects of development on coalescence are more likely as the scale of development increases, particularly if development included the east of the M6 (where effects on the rural character of the Town of Lowton and Lowton Heath would be more prominent).

Parkside Strategic Rail Freight Interchange, Volume 2 Environment Statement 2006, Table 9.1, Page 252.

British Page 252.

Parkside Strategic Rail Freight Interchange, Volume 2 Environment Statement 2006, Table 9.1, Page 252.

British Page 252.

Page 252.

Magic Map Application, Available: http://magic.defra.gov.uk/MagicMap.aspx, Accessed: 17/06/16,

Factor Potential impacts including mitigation A significant number of protected species have been recorded on the site, with the potential for **Biodiversity** more to be expected³². Various habitat have also been recorded. Development is likely to result in the loss of open ground, including some bare areas, grasslands and farmland. These impacts will be experienced at the construction phase of the development, and will be permanent impacts. Mitigation such as structural woodland, the creation of drainage swales, and grassland improvement are likely to be effective. There is an SSSI (Highfield Moss)³³ in the area. Development to the west of the M6 would not be anticipated to have a major impact upon the SSSI either during the construction or operational phase of development. It is likely that habitat enhancement and buffers could be applied to ensure potentially negative effects are minimal. Development to the east of the M6 would involve the loss of farmland (which is under stewardship and may therefore have some benefits for local species such as birds) adjacent to the Highfield Moss SSSI. A number of farmland birds and migrating birds have been recorded on the SSSI – disturbance to surrounding areas could have a knock on effect on birds feeding. The main threats to the moss are eutrophication, burning and drying out. Changing the land use from agricultural use could reduce the threat of eutrophication, but conversely, may create its own issues with regards to drainage and disturbance (e.g. noise during construction and operation of both warehouses and a rail line). There would certainly be a need to engage with Natural England if development was to involve these areas. Air quality / Under any scenario, construction of the interchange and warehousing is likely to temporarily transport increase dust emissions. Standard mitigation measures could be employed to reduce potential impacts though. The M6 AQMA³⁴ intersects the site. Development could be located so as to ensure that site occupiers are segregated from the AQMA and buildings would need to be designed appropriately (therby reducing the possibility for exposure to poor air quality). Under the Parkside Strategic Rail Freight Interchange Environmental Statement Vol 235 the predicted concentrations of nitrogen dioxide, PM10 particulates and sulphur dioxide for a worse case, 'with development' scenario result in only a slight increase of air pollutants which is not thought to require mitigation. In the wider area, southbound traffic could potentially use the A49 to access the site, which would generate increased traffic thorugh Newton-le-Willows. This could have negative effects on air quality in this area, part of which (high street) is designated as an AQMA. These effects would be dependant upon access to the site. New points of access could help to reduce impacts on air quality further afield if routes through town and district centres are reduced (for example, a link road connecting the A579 with the site would give direct access to the site from Junction 22 both northbound and southbound. This could offset the amount of traffic using local roads). **Amenity** According to the Parkside Strategic Rail Freight Interchange Environmental Statement Vol 2, development on the site would result in noise levels exceeding the Noise Insulation Regulations (1975) by 2030 at the majority of receptors on the site³⁶. There is potential for effects upon the amenity of existing residents. As well as direct effects from warehousing itself, an increase in traffic movements on the A49 and the A573 and additional rail links through the site are also likely to present the potential for adverse effects upon amenity. The precise effects of any development wil ultimately depend upon the scale, design and operation of the site. Noise pollution is likely during construction and operations, but mitigation measures

could be secured. For example, resitrctions to the time of construction activities, limits on the use of

lights and operations at certain times, the planting of noise screens such as woodland.

³² Parkside Strategic Rail Freight Interchange, Volume 2 Environment Statement 2006, Page 150.

³³ Magic Map Application, Available: http://magic.defra.gov.uk/MagicMap.aspx, Accessed: 17/06/16

³⁴ St Helens Council, Air Quality Management Areas, Available:

https://www.sthelens.gov.uk/media/2843/air_quality_management_areas_- booklet.pdf Accessed: 17/06/16

Parkside Strategic Rail Freight Interchange, Volume 2 Environment Statement 2006, Page 261.

³⁶ Parkside Strategic Rail Freight Interchange, Volume 2 Environment Statement 2006, Page 311.

Factor	Potential impacts including mitigation
Climate change	The development of a railway interchange and warehousing space is likely to contribute to an increase in carbon emissions. In general, the larger the scale of development, the greater the increase in carbon emissions. However, emissions are likely to be offset by the use of rail instead of road transport of freight. The amount of carbon savings would correspond to the capacity and efficiency of the rail interchange, so it is not necessarily the case that a larger development would lead to the greatest net change in carbon emissions.

8.7 Policy compliance

Although UK Government policy now assigns a priority to SRFIs – there remains a shortage of terminal capacity, especially for intermodal traffic across key areas of the country. The recent Transport for the North Freight and Logistics Strategy (2016) referred to the recommendation to develop 50ha of rail and / or water connected Multimodal Distribution Parks (MDPs) per year in the North of England.

With respect to option 2-4, these configurations do qualify for inclusion as a SRFI Terminal as set out in section 2.3.1 of this report and as such would be subject to the planning process as set out for National Significant Infrastructure Projects.

Due to the capacity of option 1 in terms of the number of trains received (3 per day) it does not classify as a SRFI. However this does not mean to say that this does not comply with policy. There is a clear justification for increasing rail freight terminal capacity founded in policy at both a national and regional policy level.

8.8 Pros and Cons of the Rail Terminal being on the West or East of the M6

As shown in options 1-4 it is technically feasible to develop the site on both the west and east of the M6. This section compares the pros and cons of locating the core rail freight terminal on the west or east of the M6. The comparison is outlined in Table 8.35.

Table 8.35 – Comparison of the pros and cons of locating the core rail freight terminal on the west or east of the M6

	WEST (Pro)	WEST (Con)	EAST (Pro)	EAST (Con)		
Rail Access	Can handle traffic from all four directions via use of west side reception siding loop.	Requires reception sidings in terminal to accommodate trains from west / south access approach track is of insufficient length to accommodate a reception siding prior to terminal without blocking west reception loop siding.	Can handle traffic from all four directions via use of west side reception loop. Approach track from west / south & western Loop – can double up as reception siding – so terminal footprint on east side can be smaller than west side. Reception sidings for north / east approach traffic for terminal on east side can be eliminated as West side reception sidings can fulfil this role and for south / east traffic approach track can act as reception siding and still allow west side reception sidings to function while train is paused prior to entry to terminal.	No direct north connection without use of western side reception loop, SSI prevents possible connection alignment.		
Broad Traffic Generation –	N/A – Not related to spatial location of terminal.					
Road Access (Dependent on Development Phasing)	Allows for A49 to be used at start up – but requires a box tunnel to be constructed for subsequent stages for site to reach volumes required for financial viability.	Requires box tunnel to connect east side and west side to achieve viable levels of development and to mitigate traffic impact on local highway network.	Allow for re-alignment of A573 and stopping up of A573 and avoidance of use of A49 for initial stage of development.	Requires box tunnel to connect to west side to achieve viable levels of development.		
Environment	Lower requirement for amount of Green Belt release.		Allows for the majority of the rail activities to be away from residential areas and for all HGV road access to be via A579 (M6 J22) from start up.	Higher requirement for amount of Green Belt release.		

Warehouse Development Space		Smaller amount of development space as requirement for terminal site needs to be accommodated within site footprint.	Allows higher amount of development space as site foot print on east side is larger.	
Economic Viability Assessment	A financially viable terminal can be established on the west side with the medium option and large option. However this does not include the potential cost of rerouting overhead power cables.		Site size and location allows for a larger amount of on-site development space.	Infrastructure costs higher than for west side terminal and warehousing site and higher in early stages of development. (Diversion and stopping up of A573).

8.9 What has Changed Since the Last Planning Application?

Since the withdrawal of the Prologis / Astral proposal in July 2010, which was in the main due to the onset of the financial crisis and the additional risk and uncertainty that this caused, there have been a number of significant developments which have occurred which are relevant to the deliverability of a SRFI at Parkside:

- Policy guidance Guidance has been developed including the National Networks National Policy Statement (2015), associated Development Consent Order process and the Strategic Rail Freight Interchange Guidance (2011) which support the development of such sites.
- Liverpool City Region The Liverpool City Region Growth Deal was announced on July 7th 2014 and allocated over £232m of resources to the area. The Growth Deal focuses on transport and skills projects which will support the city region's ambitions to create a freight and logistics hub serving an expanded Port of Liverpool. A Transport Plan for Growth was developed by the Liverpool City Region Combined Authority and was released in 2015 which outlines five strategic projects. One of the five strategic projects at the heart of the Transport Plan for Growth is to create a freight and logistics hub.
- Transport for the North (TfN) The Sub Regional Transport Body Transport for the North (TfN) has been established and the TfN Freight and Logistics Strategy published. The strategy recommends that 50ha of Multimodal Distribution Parks are required and innovative financing methods should be introduced to assist the market in bringing forward rail connected logistics sites.
- Network Rail A new 'virtual route' for freight and national passenger operators will be introduced as Network Rail's ninth operational route. The route is designed to help Network Rail implement the Shaw Report recommendations that it become more customer-focused and route-led.
- Rail freight forecasts Intermodal rail freight is forecasted to increase by 570% from 6.4 billion tonne/kms in 2011 to 42.9 billion tonne/kms in 2043. The establishment of Parkside as a rail freight interchange will help to support this forecast with some of the required capacity.
- **Corporate Social Responsibility (CSR)** has continued to increase especially among larger firms. This increases the attractiveness of the Parkside site with regards to its sustainable rail freight offer.
- Infrastructure improvements There have been associated improvements in area such as the investment in Newton - Le - Willows Station Interchange. Also the Chat Moss Line has been completely electrified.

However the main barrier to overcome in delivering a SRFI remains the substantial cost of the rail infrastructure and connection costs. In the case of the Parkside site the delivery of the required sustainable road access to support a sufficiently sized development site to provide a viable business case is also likely to be a significant cost. Deliverability is likely to remain challenging, as will be the requirement for innovative financing to bridge the financial gap between a road based development and a rail based development in the absence of a 'rail premium' which the market is prepared to pay.

It is recommended that as part of the development of the business case for the site that discussions are opened with Transport for the North and the Department for Transport for the Parkside site to act as a pilot project, in which to bring forward an innovative rail connection funding package, to reduce the risk to the developer and to flatten the required financial profile for this scheme. In so doing, it is this approach which will make the difference in improving the likelihood of this site being developed with the optimum rail / road connections that this strategic site offers for the support and development of the Liverpool City Region and North of England logistics sector.

Conclusions and Recommendations

09

9. Conclusions and Recommendations

9.1 Transport and Planning Policy Assessment

There is clear policy justification for the development of Parkside into a Logistics and Rail Freight Interchange as part of a network of international intermodal terminals. On a European level the *EU Road Map to a Single European Transport Area (2011)* sets out the vision for transport in Europe over the next 40 years. The overall goal is to achieve a 60% reduction of transport emissions by 2050. The Commission sets out some key goals to be achieved in relation to emissions reduction in the freight and logistics sector:

- Achieve essentially CO²-free city logistics in major urban centres by 2030.
- 30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, increasing to more than 50% by 2050. This should be facilitated by efficient and green freight corridors and appropriate infrastructure developments.
- Ensure that all core seaports are sufficiently connected to rail freight.

In order to achieve this it is necessary to have a network of efficiently and effectively designed inland terminals. During the development of this report the referendum was held with the decision to leave the EU. It is much too early to factor in any possible changes in policy as a result of this vote. But it is likely that any UK Government will continue to work towards more sustainable transport, so the sentiment of this White Paper is still relevant. Likewise, it is considered that there is still going to be strong transport and economic links to Europe even if the UK is no longer an EU member.

As far as national and local policy is concerned, the Parkside site itself is named specifically in the Transport for the North Freight Strategy and Liverpool SUPERPORT as a site suitable for consideration as a rail freight interchange. In addition since the previous developer interest, major policy developments such as the NPSNN (2015) and Liverpool City Region Freight and Logistics Hub have all strengthened the policy justification for the development.

It is recommended that St. Helens, Wigan and Warrington Councils discuss their ideas for meeting the range of sustainable freight policy requirements. There is currently no rail freight terminal in any of the three areas capable of serving the needs of the local population and industry. It is believed that one "purpose-built" rail terminal could serve the three councils and the wider city regions, and help to reduce the long distance road trunking movements on busy routes such as the M6 and M62. As well as reducing congestion and improving journey time reliability it would result in reductions in carbon dioxide and other pollutants as rail freight is 76% less polluting than road freight. Through cross border collaboration between the local authorities, the development of the required case for an area wide mitigation package of infrastructure improvements could be brought forward in conjunction with Highways England to support the development of Parkside and the wider development aspirations of Wigan and Warrington Councils.

There is a population of over 1 million people within a 20 kilometre radius of the Parkside catchment area with no other intermodal terminal competing for this potential customer base. Although Port Salford will eventually have some overlap with the Parkside catchment area, the planned growth in jobs and population of parts of Greater Manchester and Warrington will more than compensate for this.

9.2 Market Demand and Supply Assessment

From industry consultation it is clear that there is more than enough demand to support a SRFI in the North West, with Parkside regarded as the best placed site to satisfy this need. This narrative is evidenced through the positive findings from the workshop, online survey and one-to-one discussions presented throughout this report.

Indeed we have consulted with at least two companies who would be seriously interested in running the intermodal terminal at this site.

9.3 Rail Access

The opportunities for rail access from the site are second to none in the North West and also nationally with access to the West Coast Mainline and Chat Moss line easily achievable. This allows train movements to/from the north, south, east and west to be catered for at the site provided the required internal rail layout is implemented.

Despite the proximity of access to these lines there are potentially restrictions on the train paths available for freight. The West Coast Mainline is the premier rail freight artery in the country running from London to Glasgow and hence there is always strong demand for train paths on this route. The need for capacity should be investigated further once the implications of HS2 are clear as potentially extra capacity for freight should be available once many passenger trains are transferred to the new railway.

Nevertheless based on current evidence it is likely that 8 trains can be feasibly serviced by Parkside in the medium term. We would also recommend early formal engagement with Network Rail and Rail North to establish the viability of paths to the forecast destinations in a pre and post HS2 environment within the current and future passenger franchises. The opportunity for early engagement with Rail North and Network Rail provides the potential for better planning and delivery of the required capacity for freight in the North of England.

Key recommendations:

- Based on current evidence it is likely that 8 trains can be feasibly serviced by Parkside in the medium term.
- Early formal engagement with Network Rail and Rail North is required to establish the viability of paths to the forecast destinations in a pre and post HS2 environment within the current and future passenger franchises.

9.4 Road Access

Our transport analysis has confirmed that road access is potentially good with the site in relatively close proximity to the M6 (J22) and M62 (J9) allowing access to the Strategic Road Network at around 2 miles from Parkside. However there are junction capacity issues to be overcome at three junctions on the A49 at Winwick leading to J9 of the M62. From our engagement with Highways England, the development of the site to accommodate a development of up to 1 million square feet, 8 trains per day (Medium Option) could be accommodated within the existing motorway network taking into account proposed infrastructure developments as part of RIS 1.

It has been concluded that the western part of the Parkside site is capable of supporting a small development on its own but there is a significant rider to this as outlined below.

To assist in the build-out and viability of the development, up to 750,000 sq. ft. could be supported (subject to detailed analysis) with access via the A49, providing three main sets of mitigation measures are made on the A49, land is safeguarded for rail and a road access is provided under the M6 to the eastern side and through to the A579. This development should only take place in the context of an agreement to safeguard land for the necessary rail and road infrastructure on the western and potentially eastern sides, to ensure that the build-out does not stymie future development and especially should consider the need for sustainable transport. Any future masterplan for the site would have to allow for the land safeguarded for the rail and road infrastructure. This masterplan should consider Highways and Traffic Management implications including a Traffic Management Plan and wider environmental issues which have not been covered in this brief.

The site could support a larger scale development (12 trains a day) by utilisation of the eastern side of the site. The eastern side could be used for the core rail freight terminal or additional intermodal sidings. It could also be used for other traffics such as automotive or express parcels. In addition to mitigation work on the A49, once traffic levels reach an agreed level, HGV access for land both west and east of the M6 must only be permitted via the east and a new link road to the M6 J22 via a new junction on the A579.

With the commencement of RIS 2 planning process for the period 2020-2025, it is recommended that early engagement with Highways England is made concerning accommodating further growth including utilising the land to the east of the M6. However given capacity constraints along the A49, and as a result of other

developments likely to come forward in the vicinity of M62 J9 and M6 J23, a development of a greater size than the small option would require a direct access to the M6 at J22. In this event based on discussions with Wigan and Warrington Councils, it is likely that a weight restriction would be required on the A579 north of J22 in order to prevent HGV movements northbound to the A580 through Lowton Village.

Key recommendations:

- The development of the site to accommodate a development of up to 1 million square feet, 8 trains per day Medium Option could be accommodated within the existing motorway network taking into account proposed infrastructure developments as part of RIS 1, notwithstanding highways and environmental constraints related to a sole vehicular access via the A49.
- To assist in the build-out and viability of the development, up to 750,000 sq. ft. could be supported (subject to detailed analysis) with access solely via the A49 providing:
 - o Three main sets of mitigation measures are made on the A49.
 - Land is safeguarded for rail to ensure that later phases are not stymied.
 - Road access is provided under the M6 to the Eastern Side and through to the A579 to service all development following the first phase, and at second phase and beyond, to reroute HGV traffic via the eastern part of the site. Domestic (cars) traffic serving the west side would continue to access via the A49.
 - Environmental and heritage concerns are addressed and appropriate mitigation measures are introduced to ameliorate any adverse impacts on the site and neighbouring communities.
 - Masterplanning proves deliverability of the whole site (east west combined development).

9.5 Green Belt Implications

With regards to putting forward evidence for the release of Green Belt land under exceptional circumstances, it is fundamentally crucial for the delivery of a viable SRFI, that land on the west and east sides of the M6 is included for future development, including the associated road access to the A579. Without the required release, the market attractiveness, operational efficiency and financial viability of a SRFI will be adversely affected.

We would also recommend that as part of the SRFI development, an initial rail connection to provide for access from the west (and ideally also to the east) is installed on the alignment for the intermodal rail terminal. This would provide a basic facility allowing construction materials to be transported to the site by rail thereby making a substantial mitigation in the number of HGV's requiring access to the site during the construction phase of the initial and subsequent phases of the development. This would have environmental benefits and cost savings through the more efficient movement of bulk materials to the site and a legacy benefit in the provision of the live connections to support the future phases of the development including the construction and commissioning of the intermodal freight terminal.

Key Recommendations:

- It is fundamentally crucial that land on the west side of the M6 and to the east is included for future development including the associated road access to the A579.
- As part of the development, an initial rail connection allowing access from the west (and ideally also to the east) should be provided on the alignment for the intermodal rail terminal.

9.6 Core Strategy Policy CAS 3.2 Amendments

To support our conclusions we would suggest that the consideration is given to the modification of Core Strategy CAS 3.2 to align with the conclusions of this report, in order to provide a more flexible policy position to support a viable and deliverable SRFI scheme to come forward for this site. To achieve a medium or large facility which have both been found to be potentially viable and deliverable in this Study both sides of the M6 will be needed.

However as part of this, the required land would need to be allocated for the intermodal terminal along with land required for the associated rail infrastructure. The provision of road access arrangements under the M6

to link the west side to the east side and access to the M6 is absolutely fundamental to the development of this site (with the closure or severe restriction on the A49 entrance to LGVs and HGVs as traffic levels grow with the build-out).

From a planning policy perspective the increased support for rail-linked development at both the national and sub-regional level since the Core Strategy was adopted, assist in the justification of a potential rail-linked logistics allocation in the emerging Local Plan and help support the exceptional circumstances case required to meet the national Green Belt planning policy tests.

In large part it is appropriate to roll forward Core Strategy Policy CAS 3.2 and the related Green Belt justification to provide the policy framework within the emerging Local Plan. The most significant proposed change is the extension of Green Belt removal, to reflect the connectivity between early phases to the west of the M6, and later phases to the east. Policy development should acknowledge the following principles:

- Development in the west can be accessed by a proportion of HGVs via the A49 to a capacity of c.750,000 sq. ft. This should address Warrington Borough Council's (WBC) concern that it would not support the development if it created a net increase in traffic on their road network. As this development is likely to generate up to 600 HGVs per day to reduce the impact there needs to be three sets of mitigation:
 - The first is prior to the development of the site works on the A49 in conjunction with Warrington Borough Council (WBC) would be required. Discussions with WBC have indicated that mitigation measures would be required at the A49 junctions with Hollins Lane, Golborne Road, and the Winwick Link Road.
 - Secondly a new road and access should be brought forward via an underpass under the M6 and a new link road to the A579.
 - Thirdly land on the west of the M6 should be safeguarded for future rail tracks, for train marshalling and handling. As such it is considered that Phase 1 could be just a road served development. But this is sub optimal, as it is a less environmentally friendly solution when compared to rail and does create more traffic on the local road network.
- A rail and road based development allowing more warehouses on the west of the M6 and a rail terminal should be accompanied by site access from the east.
- Future stages of development to the east of the M6, served totally in road terms by M6 J22 should be accompanied by a rail link to the eastern side of the M6.

Unlike road only based solutions it cannot be stressed highly enough that the technical and commercial requirements of the rail access are fundamental to the attractiveness and commercial viability of the site to terminal operators and end customers in the cost and performance base of commercial supply chains. In our analysis, the development of the west side is technically and operationally feasible for rail linked logistics development but one which will trigger the planning process which is linked to the development of a SRFI (based on the criteria). Design compromises once built are either impossible or not cost effective to implement at a later stage unlike a road only based solution. The use of innovative financing methods as outlined in the TfN Freight and Logistics Strategy will be of assistance to give greater certainty that the required supporting infrastructure will be brought forward earlier than otherwise would be the case and enable the site to be developed in the optimal way for the rare set of characteristics that this site possesses. It is recommended that early engagement with Transport for the North is undertaken in this regard.

Key Recommendations:

- Consideration should be given to the modification of CAS 3.2 to provide a more flexible policy position to support a viable and deliverable SRFI scheme to come forward.
- Green Belt boundaries to the east of the M6 will be affected by these proposals, amendments to
 Green Belt boundaries would be justified by the arguments presented in this report. This requires a
 review of Green Belt policy to ensure consistency between land requirements of a SRFI
 development and Green Belt boundary.
- The Planning policy framework should be guided by the new Transport for the North, Freight and Logistics Strategy.
- Mitigation measures addressing the growth in local traffic should be included.
- Land should be allocated for rail access and suitable terminal facilities.
- New road access should be brought forward via an underpass under the M6 and a new link road to the A579.
- This is a unique opportunity to re-connect a formerly rail served site in an excellent geographical location into a modern SRFI that will meet the needs of modern logistics in the region.

9.7 Summary

This independent analysis has confirmed that the market attractiveness of this site for logistics activity remains as strong as and arguably stronger than in 2006 when the previous application for the site was put forward. One of the principle reasons for the site not coming forward, as mentioned on a number of occasions during the study, was the issue concerning achieving a sustainable access option to the site. The provision of the eastern access road to the A579 and the connection of the west and the east side of the development site, along with enabling rail connection work for the construction phase allows the development to take place. This could initially be with an A49 link but which commits to the development of the eastern access and implementation of the required rail connections and terminal in a later phase of development.

As the use of intermodal rail freight is growing substantially and there is insufficient capacity in other existing and planned terminals in the area, it is clear that the use of the site for rail based logistics is crucial to support the wider economy of the North West England for both the St. Helens Local Plan and Wider City Region / Northern Powerhouse objectives. There are very few sites in the North West England that come even close to the attractiveness of this site in terms of strategic location for rail and road access opportunities.

Developing Parkside as an SRFI is one of the best opportunities to offer a realistic rail based alternative to the many logistics supply chains that are currently very dependent on the M6, M56 and M62. Due to congestion, these routes do suffer from journey time variability. Railfreight is now more reliable than ever before with over 94% arriving on time. By encouraging modal switch from road to rail for primary trunking it not only reduces the number of lorries on the motorway network in Cheshire and Lancashire but it also reduces the amount of carbon dioxide emitted into the atmosphere.

The economic recovery in the economy since 2012 has further improved the potential viability of the site as set out in Chapter 3 – and subject to the required business cases companies are more likely to invest in rail. Such an investment is required to support the wider aspirations of the business community in the North of England, for example SUPERPORT Liverpool.

In conclusion, the study has established that from an operational and financial perspective a small terminal is not viable and that only a terminal that is at least a medium would be operationally and financially viable and thus ultimately deliverable as a sustainable development. It is important to note that unlike a purely road based development there are particular operational requirements for intermodal freight terminals that are crucial to include at the design stage to meet current and forecast future requirements and to minimise terminal operational costs for the operator and user.

About AECOM

AECOM (NYSE: ACM) is built to deliver a better world. We design, build, finance and operate infrastructure assets for governments, businesses and organizations in more than 150 countries.

As a fully integrated firm, we connect knowledge and experience across our global network of experts to help clients solve their most complex challenges.

From high-performance buildings and infrastructure, to resilient communities and environments, to stable and secure nations, our work is transformative, differentiated and vital. A Fortune 500 firm, AECOM companies had revenue of approximately US\$19 billion during the 12 months ended June 30, 2015.

See how we deliver what others can only imagine at aecom.com and @AECOM.

Contact
Michael Whittaker
Associate Director
T 0161 927 8262
E michael.whittaker@aecom.com

Geoff Clarke Regional Director T 0161 927 8280 E Geoff Clarke@aecom.com

Appendix 2◆Parkside Strategic Rail Freight Interchange Background Paper

ST HELENS BOROUGH LOCAL PLAN 2020-2035

PARKSIDE STRATEGIC RAIL FREIGHT INTERCHANGE BACKGROUND PAPER

October 2020

This page is intentionally left blank

Contents

1.	Introduction	2
2.	Background	3
3.	Policy Context and Evidence Base	6
4.	St Helens Borough Local Plan Proposed Approach	26
5.	Strategic Need for a SRFI	30
6.	Deliverability of Parkside East	31
7.	Parkside Planning Applications Latest Position	38
8.	Green Belt Exceptional Circumstances	40
9	Conclusions	43
	pendix 1: Site Layout for Live Planning Applications at Parkside West and for rkside Link Road	45
Ap	pendix 2: Delivery Statement for Parkside East	48

1. Introduction

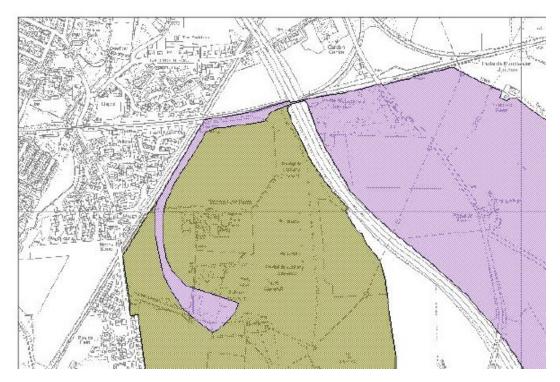
- 1.1 This Background Paper is one of several that have been prepared by the Council. It will provide evidence for the forthcoming Examination in Public of the St Helens Borough Local Plan 2020-2035 (the SHBLP).
- 1.2 This Paper briefly summarises:
 - background information about the Parkside site (see section 2);
 - the policy context and evidence base relevant to the Parkside site (see section 3);
 - the proposed approach to the Parkside site in the SHBLP (see section 4);
 - the strategic need for a Strategic Rail Freight Interchange (SRFI) at Parkside (see section 5);
 - the deliverability of Parkside East (see section 6 and Appendix 2);
 - the latest position in relation to planning applications on Parkside (see section 7); and
 - the exceptional circumstances justifying the proposed approach to the Parkside site in the SHBLP (see section 8).
- 1.3 This Paper should be read in conjunction with other documents prepared by the Council. These include:
 - the Council's background papers covering developing the strategy¹;
 climate change² and employment land³; (documents ref SD026; SD028;
 and SD022);
 - the Duty to Cooperate statement⁴ (document ref SD009); and
 - other evidence base documents including the Parkside Logistics and Rail Freight Interchange Study⁵ (August 2016).

¹ Developing the Spatial Strategy Background Paper (SD026)

² Climate Change Background Paper (SD028)

³ Employment Land Need and Supply Background Paper (SD022)

⁴ St Helens Local Plan 2020-2035, Duty to Cooperate Statement (SD009)


⁵ Parkside Logistics and Rail Freight Interchange Study (EMP005)

2. Background

- 2.1 The Parkside site is located midway between the cities of Manchester and Liverpool. The site is dissected by the M6 motorway, close to Junction 22 and the M6/M62 interchange at Junction 21a and is adjacent to the West Coast Mainline (WCML) and Liverpool to Manchester (Chat Moss) railway, both of which form core routes within the Government's Strategic (Rail) Freight Network (SFN).
- 2.2 The St Helens Core Strategy (2012) identified Parkside as a strategic location for a SRFI, and the SHBLP 2020-2035 proposes the allocation of land for a SRFI with an operational area of approximately 64.55ha (site 7EA) to the east of the M6, and 5.58ha to the west of the M6 (site 8EA). The site comprises two elements; Parkside East is the proposed location of the SRFI (together with other industrial and logistics uses), and Parkside West is a separate, though linked, proposed employment land allocation for logistics use, which will be served by road only, although it will likely accommodate a reception siding for incoming trains, which could in turn be linked to Parkside East. Both the West and East sites are located within the St Helens Green Belt, which links with the Green Belts of Warrington and Wigan.
- 2.3 Parkside West is 97.43ha in size and comprises:
 - the former Parkside Colliery, including existing areas of hard standing, the colliery spoil tips, associated settlement ponds and related former infrastructure; and
 - former agricultural land and Newton Park Farm in the west and north west of the site.
- 2.4 Parkside West is located on the south-eastern edge of Newton-le-Willows, approximately 1 km north of Winwick, which is in Warrington Council's administrative area, and 1.5 km south-west of Golborne, which is in Wigan Council's administrative area. The site ceased production in 1992 and all the pithead buildings and ancillary structures were subsequently demolished. The site has elements of both brownfield and greenfield land. There are two Grade II Listed Buildings and features of archaeological interest in the vicinity. The south western part of the site forms part of a Registered Battlefield 'The Battle of Winwick' which was designated in 2018.
- 2.5 Newton-le-Willows High Street and Willow Park Conservation Areas lie to the north of Parkside West on the A49. An Air Quality Management Area is in place along the M6 corridor and Newton-le-Willows High Street. The A49 Winwick Road is a busy road that runs between Junction 23 of the M6 to the north and Junction 9 of the M62 to the south. Residential development fronts the A49 and backs onto the site.
- 2.6 Parkside East is 124.55ha in size and comprises of predominately open farmland (mostly agricultural land of Grade 2 and 3a quality) and is on the opposite side of the M6 from the former colliery area at Parkside West and the built up area of Newton-le-Willows.

- 2.7 Following the decommissioning of Parkside colliery, there has been significant interest from both the private and public sector in bringing the Parkside site forward for logistics and distribution use including a SRFI.
- 2.8 In 2016 consultants AECOM were commissioned by St Helens Council to undertake the Parkside Logistics Rail Freight Interchange Study (2016). The Study concluded that there was sufficient demand from the industry to support a SRFI in the North West, with Parkside regarded as the best placed site to satisfy that need. It also concluded that eight trains per day could feasibly service by Parkside in the medium term and 12 trains in the longer term, with discussions with Network Rail and Transport for the North necessary in order to establish the viability of paths to forecast destinations, in a pre- and post-HS2 environment within the current and future passenger franchises.
- 2.9 The scheme concept set out in the AECOM Study (2016) is shown as Figure 1. The proposed approach to the Parkside site in the SHBLP is informed by the findings of the AECOM Study (2016). Parkside West is a proposed road based employment allocation (B8, B2 logistics) but could potentially be served from the SRFI by tractor units. Parkside East is a proposed allocation for a SRFI and / or for rail served employment development.

Figure 1: Parkside SRFI Site

2.10 Parkside West is owned and being promoted by Parkside Regeneration, a joint venture between commercial developers Langtree and St Helens Council (with the exception of Newton Park Farm which is not owned by Parkside Regeneration). Parkside East is under the control of developers iSec with the intention of developing a SRFI (incorporating a food manufacturing and distribution 'Super Hub') on the site. iSec are in advanced discussions with

- one of the established rail freight operators in respect of the design of the rail freight interchange facilities on site (see Appendix 2 for further information).
- 2.11 There are currently two live planning applications on the Parkside site. Planning application P/2018/0048/OUP⁶ was submitted in January 2018 for a phase 1 logistics development on Parkside West (site 8EA). Planning application P/2018/0249/FUL was submitted in March 2018 for a single carriageway road referred to as the 'Parkside Link Road', which would link the A49 Winwick Road to the A579 Winwick Lane enabling access to Junction 22 of the M6. In May 2020, both planning applications were called-in for determination by the Secretary of State. A public inquiry in relation to the applications is likely to take place in early 2021. The site layouts for these schemes are shown in Appendix 1.

⁶ Section 7 of this Paper provides further information.

3. Policy Context and Evidence Base

3.1 The development of new rail-linked logistics development is strongly supported at a European, national, regional and local policy level. The following policy and evidence base documents have helped inform the proposed approach within the SHBLP with regards to the Parkside sites.

European Policy and Evidence Base

- 3.2 The White Paper 2011: Roadmap to a Single Transport Area Towards a competitive and resource efficient transport system, European Commission, sets out the vision for transport in Europe over the next 40 years. The Commission sets out the following key goals to be achieved by 2050.
 - Halve the use of 'conventionally-fuelled' vehicles in urban transport by 2030; phase them out in cities by 2050.
 - Achieve essentially CO2-free city logistics in major urban centres by 2030.
 - 30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, increasing to more than 50% by 2050. This should be facilitated by efficient and green freight corridors and appropriate infrastructure developments.
 - Ensure that all core seaports are sufficiently connected to rail freight and, where possible, inland waterway systems.
 - Achieve a 60% overall reduction of transport emissions by the middle of the twenty first century.
- 3.3 The Combined Transport (CT) Directive (Council Directive 92/106/EEC) seeks to promote Combined Transport (i.e. intermodal) freight operations. As part of the process of updating the Directive, a 2014 study highlighted the need for better infrastructure, noting the problems of securing planning consent for new terminals.⁷
- 3.4 Whilst not all related directly to rail freight, there is a clear focus on rail freight as a key contributor to progress towards sustainable freight transport in Europe.
- 3.5 Although the UK is now in the process of leaving the EU, it is much too early to factor in any possible changes in policy. But it is likely that any UK Government will continue to work towards more sustainable transport, so the sentiment of this White Paper is still relevant.

⁷ https://ec.europa.eu/transport/sites/transport/files/themes/strategies/studies/doc/2015-01-freight-logistics-lot2-combined-transport.pdf (page 13)

National Planning Policy and Evidence Base

National Policy Statement for National Networks (2014)

- 3.6 The National Policy Statement for National Networks (NPSNN) sets out Government policies for nationally significant rail and road infrastructure projects for England. It also forms the primary basis for making decisions on development consent applications for national networks Nationally Significant Infrastructure Projects (NSIPs).
- 3.7 NPSNN states that the Government believes that it is important to facilitate the development of the intermodal rail freight industry because the transfer of freight from road to rail has an important part to play in the low carbon economy and in helping to address climate change (Paragraph 2.53). For this reason, a network of SRFIs are needed across the regions, to serve regional, sub-regional and cross-regional markets. In all cases it is essential that these have good connectivity with the road and rail networks, in particular the strategic rail freight network (Paragraph 2.43).
- 3.8 Paragraph 2.56 of the NPSNN states that Government has concluded that there is "a compelling need for an expanded network of SRFIs" and notes that it is "important that SRFIs are located near to the business markets they will serve major urban centres or groups of centres and are linked to key supply chain routes." Paragraph 2.56 of the NPSNN advises that, due to the locational and operational requirements of SRFIs, the number of locations suitable for this form of development will be limited.
- 3.9 Importantly, Paragraph 5.1.72 states that promoters of SRFIs "may find that the only viable sites for meeting the need ... are on Green Belt land". This indicates the Government's acknowledgement that, because SRFIs need to be located close to the markets that they are intended to serve and because major urban markets tend to be surrounded by Green Belt, such development may need to be accommodated on Green Belt sites.

National Planning Policy Framework (2019)

3.10 An economic objective of the National Planning Policy Framework (NPPF) is to:

"help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure" (Paragraph 8).

- 3.11 Local Plans should apply a presumption in favour of sustainable development (Paragraph 11), which means they should positively seek opportunities to meet the development needs of their area and provide for objectively assessed needs for housing and other uses.
- 3.12 In plan making, the NPPF requires strategic policies in a Local Plan to make sufficient provision for employment and commercial development. Paragraph 23 states:

"Strategic policies should provide a clear strategy for bringing sufficient land forward, and at a sufficient rate, to address objectively assessed needs over the plan period, in line with the presumption of sustainable development."

- 3.13 NPPF Paragraph 23 also confirms this should include planning for and allocating sufficient sites to deliver the strategic priorities of the area, except where needs can be met more appropriately through alternative mechanisms.
- 3.14 Paragraph 80 of the NPPF is clear that economic growth and productivity should be supported through Local Plan policies. Paragraph 80 states:

"Planning policies and decisions should help create the conditions in which businesses can invest, expand and adapt. Significant weight should be placed on the need to support economic growth and productivity, taking into account both local business needs and wider opportunities for development. The approach taken should allow each area to build on its strengths, counter any weaknesses and address the challenges of the future."

- 3.15 Paragraph 81 specifically requires planning policies to:
 - "a) set out a clear economic vision and strategy which positively and proactively encourages sustainable economic growth, having regard to Local Industrial Strategies and other local policies for economic development and regeneration;
 - b) set criteria, or identify strategic sites, for local and inward investment to match the strategy and to meet anticipated needs over the plan period;
 - c) seek to address potential barriers to investment, such as inadequate infrastructure, services or housing, or a poor environment; and
 - d) be flexible enough to accommodate needs not anticipated in the plan, allow for new and flexible working practices (such as live-work accommodation), and to enable a rapid response to changes in economic circumstances."
- 3.16 The NPPF also requires planning policies to recognise and address the specific locational requirements of different employment sectors. This includes making provision for clusters or networks of knowledge and data-driven, creative or high technology industries; and for storage and distribution operations at a variety of scales and in suitably accessible locations.
- 3.17 Paragraph 104 states that planning policies should:

"provide for any large scale transport facilities that need to be located in the area, and the infrastructure and wider development required to support their operation, expansion and contribution to the wider economy. In doing so they should take into account whether such development is likely to be a nationally significant infrastructure project and any relevant national policy statements."

- 3.18 The NPPF promotes sustainable development and states that the planning system should support the transition to a low carbon future, helping shape places in ways that contribute to radical reductions in greenhouse gas emissions, supporting renewable and low carbon energy and associated infrastructure (Paragraph 148).
- 3.19 Paragraph 5 states that the NPFF does not contain specific policies for nationally significant infrastructure projects. These are determined in accordance with the decision-making framework in the Planning Act 2008 (as amended) and relevant national policy statements for major infrastructure, as well as any other matters that are relevant (which may include the NPPF). The NPPF states that national policy statements form part of the overall framework of national planning policy and may be a material consideration in preparing plans and making decisions on planning applications.

Planning Practice Guidance, Employment Land Review Guidance – Housing and Economic Needs Assessment (July 2019)

3.20 The Planning Practice Guidance (PPG) gives specific recognition to the logistics sector, stating that:

"The logistics industry plays a critical role in enabling an efficient, sustainable and effective supply of goods for consumers and businesses, as well as contributing to local employment opportunities, and has distinct locational requirements that need to be considered in formulating planning policies (separately from those relating to general industrial land)" (031, Reference ID: 2a-031-20190722).

3.21 The PPG emphasises that:

"strategic facilities serving national or regional markets are likely to require significant amounts of land, good access to strategic transport networks, sufficient power capacity and access to appropriately skilled local labour" (031, Reference ID: 2a-031-20190722).

Future of Freight: Interim Report, National Infrastructure Commission (2018)

3.22 The National Infrastructure Commission (NIC) in their published Future of Freight: Interim Report, looked closely at the role of local planning authorities in relation to freight and concluded that the current planning system

- encourages local authorities to only plan for the parts of the freight system that they 'see' within their area. Current planning policy encourages neighbouring local planning authorities to agree and cooperate on 'strategic policies' and cross border issues, which can include housing, transport infrastructure and water supply, but there is limited precedent for freight.
- The Report indicates that without better recognition of the value of freight in planning, the freight system will encounter more pinch points, restricting its capacity to operate efficiently and deliver goods in the most sustainable way possible. Therefore, the NIC are committed to explore in the next phase of their work how local planning authorities can develop and maintain a more robust evidence base on demand and supply for logistics land, and the steps that should be taken to maintain a suitable supply and correct an emerging undersupply issue.

Transport infrastructure for our global future: a study of England's port connectivity (2018)

3.24 The Department for Transport's Ports Connectivity Study examined port surface access and connectivity in England to identify improvements that support economic growth and help inform transport investment decisions. The Study makes the case for improved freight connectivity, including rail freight connections, to and from English ports. The Study concludes that improved rail and road links will provide more effective freight journeys between important economic areas and ports, which will increase productivity, lower costs and provide access to international markets.

Clean Growth Strategy (2017)

3.25 The Government's Clean Growth Strategy sets out how the Government is working to enable cost-effective options for shifting more freight from road to rail, including using low emission rail freight for deliveries into urban areas, with zero emission last mile deliveries.

Rail Freight Transport Strategy (2016)

3.26 In 2016 the Government published a dedicated Rail Freight Transport Strategy which was developed in collaboration with the rail freight industry and sets out a shared vision for the future of the sector. The Strategy outlines the Government's aim of promoting freight transport by rail in order to limit road congestion and reduce transport carbon emissions. The Strategy identifies four priority areas where further action by Government, industry and others could empower rail freight to achieve its potential: innovation and skills; network capacity; track access charging; and telling the story of rail freight. In assessing the key sectors in the rail freight market, the conclusion on intermodal freight (now the largest part of the rail freight market) is that the key constraint to unlocking potential in this sector is the availability / construction of suitable rail-connected terminal facilities including SRFI (page 21).

Regional Policy and Evidence Base

Transport for the North Strategic Transport Plan (2019)

3.27 The Transport for the North (TfN) Strategic Transport Plan seeks to overhaul northern transport infrastructure over the next 30 years, connecting the major cities and moving forward with its flagship project Northern Powerhouse Rail (NPR). Alongside NPR another key project is the long term rail strategy which proposes investment in lines, stations, services and franchises to deliver greater connectivity, capacity and cost effectiveness.

Transport for the North Long Term Rail Strategy (2018)

- 3.28 The Transport for the North Long Term Rail Strategy sets out TfN's guiding principles for rail and is an integral part of the Strategic Transport Plan. It sets out why change is needed, what that change should be and how that change should be delivered, with an ambitious vision for the transformation of the North's rail network based on five themes. One of these themes is connectivity.
- 3.29 The connectivity theme seeks to see a step-change in connectivity including frequency and journey time improvements for both passenger services and freight, combined with better integration of services. The principal intervention within the next five year period for rail enhancements will be the Trans Pennine Route Upgrade, with improvements concentrated on the corridor between Manchester and Leeds. A relevant aim is W10/W12 gauge clearance and provision of one freight path per hour (in each direction) for freight services.
- 3.30 The Strategy indicates that HS2 will be transformational for the North of England and will free up much-needed capacity on the existing rail network for both passenger and freight services by allowing the existing West and East Coast Main Lines, and the Midland Main Line, to be used in different ways, growing the overall capability of the rail network to meet future need.
- 3.31 The Strategy indicates that where modal shift from road to rail may not currently be seen as economically viable, there is the opportunity to create the right conditions for a paradigm shift in the way that freight is viewed in the North. To achieve this, freight routes must be direct and not circuitous, which is a significant constraint at present. Freight routes and paths must be planned alongside passenger rail, rather than as an afterthought.
- 3.32 The Strategy also sets out the need for multimodal connectivity improvements and indicates there is a clear benefit in developing sites with multimodal access that can accommodate the efficient transfer of goods between modes for storage and onward distribution. Improving the strategic East-West, multimodal connectivity between the important economic centres, assets and ports within Liverpool City Region, Greater Manchester, Cheshire, Sheffield City Region, East Riding and Hull and Humber, as well as cross-border

movements to the Midlands is a key aim for the Southern Pennines strategic development corridor.

Transport for the North – Northern Freight and Logistics Strategy Report (2016)

- 3.33 The Transport for the North Northern Freight and Logistics Strategy Report was published in September 2016 and was designed to carry out a number of purposes including:
 - reduce the cost of freight transport to both users and non-users (for example, reducing the environmental impacts of freight and logistics movements);
 - expand market share in the logistics sector; and
 - attract inward private sector investment to the Northern Powerhouse.
- 3.34 The Strategy has a strong focus on the increased use of rail freight through improved availability of train paths and development of rail freight interchanges to help achieve the goals of the strategy. The core of the strategy is as follows:
 - the development of 50 hectares of rail and/or water connected Multimodal Distribution Parks (MDPs) per year, to be located at the edge of urban centres;
 - rail network upgrades to allow 20% longer freight trains to operate on a six day week basis, which will reduce unit costs through improved asset productivity;
 - the promotion of short-sea shipping (particularly for unitised freight) to bring cargo directly to Northern ports;
 - complementary land-side access improvements to ports to reduce local road congestion, most importantly along the route of the M62/M60 north of Manchester and into Hull and Liverpool; and
 - raising the quality of the environment to further promote the Northern economy.
- 3.35 The Strategy recognises a lack of capacity on the existing rail network in the North and that additional capacity is required along both north-south and east-west routes to help achieve the rail/port centric distribution outlined in the Strategy. The Strategy specifically recognises Parkside as a potential rail freight interchange site.

Former North West Regional Spatial Strategy (RSS) (2008)

3.36 Prior to the abolition of Regional Spatial Strategies in July 2010, the North West RSS (2008) Policy RT8 provided strong regional policy support for the development of a SRFI at Parkside. It stated that plans and strategies should facilitate the transfer of freight from road to rail and /or water by the identification of sites for inter-modal freight terminals, adding that

- consideration should be given to the allocation of land for inter-modal freight terminals in broad locations including Parkside.
- 3.37 The RSS indicated that if attempts to increase the volume of freight moved by rail or water in the region were not undertaken, then this could lead to a shortage of inter-modal freight terminals close to the major origins and destinations of freight in the North West.

Sub-Regional Planning and Evidence Base

Building Back Better – the Liverpool City Region Economic Recovery Plan (July 2020)

- 3.38 The Liverpool City Region (LCR) Combined Authority's Economy Recovery Plan shows how economic recovery from the COVID-19 pandemic could be delivered, across four strategic themes. The four themes: the business ecosystem, people-focused recovery, place, and a green recovery are all underpinned by a tangible commitment to build back better.
- 3.39 In relation to the Green Recovery theme, the Plan indicates that the City Region's target date for reaching net carbon neutrality is 2040 and this sits within the UK's legal commitment to achieving net zero carbon emissions by 2050. The Plan emphasises the urgent need to transition to a zero-carbon economy and indicates that this remains unchanged by the COVID-19 pandemic.

Draft Liverpool City Region Local Industrial Strategy (March 2020)

- 3.40 NPPF Paragraph 81a and the PPG place specific emphasis on the need to take account of policy and evidence contained in Local Industrial Strategies when setting out a clear economic vision in Local Plans. The LCR Draft Local Industrial Strategy (LIS), building on the UK Industrial Strategy (2017) identifies five foundations of productivity that require strengthening to unlock the full potential of opportunities that exist in the City Region. The LIS indicates that the full potential of the opportunities that exist in the LCR can only be unlocked if the foundations of the LCR economy are sufficiently strengthened. Performance gaps must be addressed in order to level-up with the rest of the UK economy and maximise the potential for transformation. These foundations include:
 - the opportunity to turn potential into prosperity (people);
 - a dynamic business base creating opportunity (business environment); and
 - connecting all communities to opportunity (infrastructure).
- 3.41 The LIS states that delivering the infrastructure foundation includes supporting the clean growth of freight and logistics. The LIS indicates that given the LCR'S identified assets including the port, inland ports, Liverpool John Lennon Airport, the Manchester Ship Canal, proximity to national arterial road

- networks, and the potential for a major intermodal freight interchange at Parkside, the LCR will continue to be a hub for freight and logistics.
- 3.42 Securing HS2 and Northern Powerhouse Rail is also identified as integral to delivering the infrastructure foundation. The LIS suggests that a Northern Powerhouse Rail would form a 'belt' between Liverpool / Manchester / Sheffield / Leeds / Hull, enabling increased service patterns and frequency, providing a stronger link to Manchester's international airport, and helping to ensure that the LCR is central to, and fully contributing towards, the success of the wider northern economy. Importantly for the proposed SRFI site at Parkside, the LIS states that this could also free up capacity for freight and logistics, bringing national benefits economically and environmentally.

Liverpool City Region Strategic Housing and Employment Land Market Assessment (SHELMA) (March 2018)

- 3.43 The main objective of the SHELMA was to provide a consistent joint evidence base for housing and employment land needs over the period to 2037 for the LCR and West Lancashire. The scope of the Assessment was to review:
 - future economic performance, and the scale of growth in jobs to 2037:
 - the objectively assessed need (OAN) for housing; and
 - the need for B-class employment land.
- 3.44 The SHELMA identified a large-scale B8 land requirement of 308-397ha to 2037 for the LCR, though this was not disaggregated to the local authority level.

Liverpool City Region Assessment of the Supply of Large-Scale B8 Sites (June 2018)

- 3.45 The LCR Assessment of the Supply of Large-Scale B8 Sites report was prepared by a consultant team led by GL Hearn on behalf of the LCR authorities to assess sites for large scale logistics premises (defined as being over 9,000 sqm or 100,000 sqft). The report looked at two scenarios a do minimum approach (current economic growth and committed transport investments) and a do something approach (substantial transport infrastructure investment including a Transport for the North Strategy).
- 3.46 The report included assessments of current and potential sites within the LCR that could accommodate large-scale logistics and warehousing uses. The potential sites were those that were known across the City Region as they have been in the planning pipeline for a long time (such as Parkside) or they benefit from a Local Plan allocation or a planning permission. This included four sites within St Helens:
 - Parkside SRFI, (Local Plan site 8EA);

- Parkside West (Local Plan site 7EA);
- Land to the North of Penny Lane, Haydock (Local Plan site 3EA the site is now fully complete and operational); and
- Land at Florida Farm North, Haydock (Local Plan site 2EA the site is now fully complete and operational).
- 3.47 For the Parkside East (site 7EA) the assessment found that the site was a prime site within the City Region to support development of a new SRFI. The site was considered an attractive location for regional and national distribution activities and for large scale B8 and B2 uses. For the Parkside West site (site 8EA) the assessment found the site to be a prime site within the City Region providing potential for 63.65 ha of strategic B2 and B8 development at a location which provides excellent access to strategic road and rail networks.
- 3.48 From this analysis of the St Helens and other local authority area sites, the report estimated a total available land area that would be appropriate for large-scale warehouse uses. The report found that St Helens has the highest amount of available land in the LCR for B8 uses, comprising 45% of the Region's supply of B8 land. However, this total includes a number of sites which are proposed in emerging Local Plans but are currently under Green Belt designation (such as the Parkside sites).
- 3.49 The report looked at the demand and supply balance for strategic B8 land. The demand requirement⁸ to 2037 was estimated to be between 339ha (do minimum scenario) and 437ha (do something scenario). When considering available supply, this results in a requirement of a further 43.4-141.4ha of strategic B8 land by 2037.

Liverpool City Region SHELMA Areas of Search Assessment (August 2019, and Addendum Sheet, November 2019)

- 3.50 The LCR Areas of Search Assessment (August 2019) built on the work previously undertaken in the LCR Assessment of the Supply of Large-Scale B8 Sites (June 2018), by assessing sites that were not part of the 'committed supply' (sites within the planning pipeline such as Parkside or with allocations and planning permissions) that could be considered to provide further development potential for strategic B8 warehousing and distribution requirements.
- 3.51 The Areas of Search Assessment updated the committed supply position in the Assessment of the Supply of Large-Scale B8 Sites (June 2018), and indicates that if the supply of land likely to support strategic B8 development is extended to include sites as set out in the Table 3 of the Assessment (as corrected by the Addendum Sheet 2019), then the total supply increases to

⁸ The demand requirement is slightly higher than the LCR SHELMA (2018) indicated as it includes a 10% buffer to account for churn, flexibility, normal market vacancy and choice.

- 342.68ha (previously 295.6ha in the Assessment of Supply of Large-Scale B8 Sites, June 2018).
- 3.52 The Areas of Search Assessment establishes a residual over-supply of 3.68ha for the 'Do Minimum' scenario and a residual requirement of 94.32ha for the 'Do Something' scenario.
- 3.53 The Areas of Search Assessment then goes on to review several potential sites that could meet the residual requirement of 94.32ha. Table 8 of the Areas of Search Assessment summarises the findings of the assessment of these sites, and proposed SHBLP employment allocation sites 1EA (Omega South Western Extension), 5EA (Land to the West of Haydock Industrial Estate) and 6EA (Land west of Millfield Lane, south of Liverpool Road and north of Clipsley Brook, Haydock) totalling 60.2ha in are identified as sites that could help meet the residual requirement in the short term.

Liverpool City Region Freight and Logistics Strategy (2017)

- 3.54 The Freight and Logistics Strategy was prepared by Mott MacDonald and MDS Transmodal on behalf of Merseytravel and its partners, including the Local Enterprise Partnership (LEP). The Strategy aims to:
 - ensure the freight and logistics sector maximises its contribution towards achieving the economic development aspirations for the LCR, including creating additional GVA and employment opportunities; and
 - minimise, as far as possible, the environmental and social impacts of freight and logistics activities on local communities and business in the LCR and enhance the quality of life for residents.
- 3.55 The Strategy states that:
 - "as the LCR is relatively peripheral for national distribution activity, it is only through the greater use of lower cost forms of freight transport (rail and waterborne) that the city region can secure additional market share. Limited road capacity and pressing concerns over air quality mean that in the longer term, there is a clear need to secure modal shift from road distribution to rail and waterways."
- 3.56 The first key 'package' of interventions identified by the Strategy is for the development of more MDPs and supporting infrastructure which will improve efficiencies and capacities of distribution. Potential locations identified for MDPs in the LCR, include Parkside, Knowsley Business Park, 3MG in Halton, Port Wirral, along the Manchester Ship Canal, and/or along the Fiddlers Ferry Line between Widnes and Warrington. Interventions which could be delivered as part of this package include:
 - public sector support for the development of MDPs through the planning system. This could include support for the acquisition

- and assembling of land, and / or entering into active partnerships with private parties to develop plans for the site;
- provision of new or enhanced link roads to facilitate suitable HGV access to the MDP. This could include the construction of new link roads, combined with capacity upgrades in the local area to accommodate the effects of increased HGV traffic; and
- provision of new rail connections to the MDP. This could include connections to the national network, reception lines and an intermodal terminal within the MDP.
- 3.57 The Strategy identifies three rail access options for Parkside: access onto the Chat Moss Line eastbound, west of the M6; access onto the Chat Moss Line westbound, west of the M6 and access onto the Chat Moss Line westbound, east of the M6.
- 3.58 The Strategy indicates that another key package of interventions will be around freeing up rail capacity on the network (east-west and north-south). This package focuses on delivering greater capacity for freight traffic on the rail network to and from the LCR, which will accommodate the anticipated demand from the private sector and deliver economic, environmental and decongestion benefits for the region. It consists of a combination of 'hard' rail infrastructure investments, and 'softer' measures which do not have a direct capital cost. These investments include securing additional paths for freight trains on the WCML. The Strategy indicates that the development of HS2 may provide some additional capacity in the longer term on the WCML, if it leads to a net reduction of passenger services on the existing tracks.
- 3.59 The Strategy indicates that a further effective local measure may be provided by Northern Powerhouse Rail providing a new high speed passenger link between Liverpool and Leeds, linking to HS2, which could further contribute to relieving the WCML north of Weaver Junction. The Strategy also indicates a need for two paths in each direction along the Chat Moss route. Similar to the situation on the WCML, the delivery of Northern Powerhouse Rail may provide some additional freight capacity in the longer term on trans-Pennine routes, if it leads to a net reduction of passenger services on the existing tracks.
- 3.60 Capital investment in support of optimisation measures could include grade separation at Earlestown West Junction (in St Helens) to allow freight to move between the Chat Moss line and the WCML without needing to cross other tracks.

Liverpool City Region Strategic Investment Fund (SIF)

3.61 In November 2018, the LCR Combined authority announced that they had approved £24 million funding for the Parkside Link Road scheme. The LCR Combined Authority approved the application for SIF, subject to conditions.

When making the announcement Steve Rotheram, Metro Mayor of the Liverpool City Region, said:

"The Combined Authority's key priority is to drive economic prosperity for the whole city region and ensuring that we have the right transport infrastructure in place is absolutely vital. This new link road is a key element of the future economic development of St Helens, and the rest of the city region, which is why the Combined Authority was so keen to support it."

3.62 The LCR Combined Authority SIF Appraisal Report – Full Business Case^{9,} published at the time of the funding approval announcement concludes that:

"the Parkside Link Road project represents a rare opportunity to enable development and open up a strategic development site in an attractive market location with the (indirect) potential to create significant new floorspace, jobs, economic growth, attract investment, generate value and enhance movement on a regeneration site that has long been recognised as a strategic priority at the regional level."

3.63 This confirms the very high level of policy support for the Parkside site.

A Transport Plan for Growth, Liverpool City Region (2015)

- 3.64 One of the five strategic projects at the heart of the Transport Plan for Growth is to create a freight and logistics hub. This project aims to put the City Region in the best place to respond to changes in the UK and international logistics market.
- 3.65 Wider strategic priorities are outlined with Freight and Logistics considered the most important. The Plan recognises that improving connectivity and capacity for freight on our road and rail networks opens up access to the Port of Liverpool from across the whole of the UK and is therefore fundamental to supporting the economic prosperity of the Region. There is also a strong emphasis on logistics and freight as a means of supporting and enhancing the economic output of the region.
- 3.66 Delivering the SUPERPORT Freight and Logistics Hub (developments, sites and premises) is a key priority. The Parkside site along with Knowsley Industrial Park and 3MG in Halton are recognised as key to achieving the SUPERPORT Hub.

⁹ The report is available to view here:

Liverpool City Region Growth Deal (2014)

- 3.67 The LCR Growth Deal was announced in July 2014 and allocated over £232m of resources to the area with £35m of new funding confirmed for 2015/16 and £153.2m from 2016/17 to 2021. The Growth Deal focusses on transport and skills projects which will support the City Region's ambitions to create a freight and logistics hub serving an expanded Port of Liverpool.
- 3.68 The Growth Deal focuses on four priority areas. These include creating a LCR freight and logistics hub, a low carbon LCR and skills and business support to enable growth. Other transformational projects include LCR2Energy which will facilitate the transition of the City Region's energy requirements to a lower carbon supply and access to the Port of Liverpool.
- 3.69 The programme of projects aimed at creating a LCR Freight and Logistics Hub builds on the investment in Liverpool2 and the £600m investment in the Mersey Gateway. Both these projects complement the Atlantic Gateway initiative and the aspirations of the Cheshire and Warrington, and Greater Manchester LEPs for job creation resulting from expanding freight capacity.

Liverpool SUPERPORT Market Analysis Land and Property Report (2014)

- 3.70 The market analysis for land and property in relation to the Liverpool SUPERPORT, is set out in the Liverpool SUPERPORT Market Analysis Land and Property Report (2014), which outlines a minimum land supply of 634ha over the next 20 years, split across logistics (418 ha) and manufacturing use (216 ha). Factoring in a 25% headroom in supply, to allow for client choice etc. to enable the market to function properly this would inflate the totals required to 793 ha for logistics (522 ha) and manufacturing use (271 ha) overall.
- 3.71 As part of the market analysis for land and property a number of current and potential sites were identified that are capable of addressing the specific need for logistics facilities in the LCR. A SRFI at the Parkside is identified as a key project if the SUPERPORT is to be successfully delivered.

Local Policy and Evidence Base

St Helens Local Plan Core Strategy (2012)

3.72 The St Helens Local Plan Core Strategy forms part of the existing development plan for St Helens. Policy CSS1: Overall Spatial Strategy, identifies an area of land principally based on the former Parkside Colliery as a strategic location for a SRFI subject to an appropriate scheme being delivered on the site.

- 3.73 Policy CAS 3.2: Development of a Strategic Rail Freight Interchange (SRFI) at the former Parkside Colliery, identifies the former Parkside colliery as a location for a SRFI and sets out how the Council will support development of the site as a SRFI, provided a number of criteria are met. The Policy seeks to facilitate the transfer of freight between road and rail by making best use of Parkside's unique locational advantages in terms of road and rail infrastructure. It identifies the appropriate scale of development, outlining an appropriate phased release of land and defines criteria which a SRFI proposal will need to satisfy to be considered suitable. The Policy recognises that for operational, viability and commercial reasons a larger area of land extending to the east of the M6 motorway may also be required to accommodate an enlarged SRFI.
- 3.74 Figure 2 shows a very basic indicative layout of the SRFI from the Core Strategy.

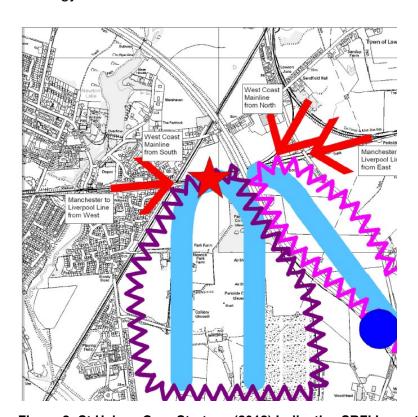


Figure 2: St Helens Core Strategy (2012) Indicative SRFI Layout

3.75 St Helens Council recognised that road access via the A49 would not be acceptable as the main access to the SRFI. The Policy indicated that the delivery of an acceptable SRFI at Parkside would be dependent on a suitable scheme being agreed by the Highways England and St Helens Council, that would provide appropriate infrastructure to mitigate local and wider off-site traffic impacts of the SRFI.

Parkside SRFI Evidence Base Background Paper (January 2010)

- 3.76 As part of the evidence base to inform the Core Strategy, St Helens Council appointed Scott Wilson (now AECOM) and Atkins to carry out a study into the development of a SRFI at the former Parkside colliery in order to inform and support the identification of the site as a strategic location for a SRFI in the St Helens Local Plan Core Strategy (2012).
- 3.77 The Study concluded that a SRFI at Parkside would be of significant importance not just for St Helens but also at a regional, sub-regional and national level and would help deliver an essential component of central Government's strategy for the transfer of freight from road to rail and was thus compliant with national policy. The Study identified likely significant beneficial impacts in respect of the transport network, with a reduction in CO2 emissions arising from the transfer of freight from road to rail and the significant, much needed, employment opportunities likely to be generated. The Study also indicated that a SRFI at Parkside is deliverable in operational and technical terms and measures up well against the criteria identified by the Strategic Rail Authority (SRA) in its SRFI Policy.
- 3.78 The Study highlighted a number of economic viability issues and risks in delivering a SRFI at Parkside, including the cost of providing up-front infrastructure including a new motorway junction and M6 hard shoulder running, and that in the short term the Parkside site would be competing with interchange terminals at Port Salford and 3MG at Ditton.

St Helens Allocations Local Plan – Economic Evidence Base Paper (2015)

- 3.79 The Allocations Local Plan Economic Evidence Base Paper (2015) prepared by consultants AECOM and DTZ provides an expert view of market demand for employment land in St Helens. The Paper demonstrates strong recent demand for modern large scale logistics development in the North West, particularly over 100,000 square feet. SuperPort is identified as a project that will increase the demand for large logistics and manufacturing space in the Borough. The Paper concludes that large scale logistics is the most active market in the region and a particular opportunity for St Helens given its location straddling the M6.
- 3.80 The Paper identifies a number of key locational and site specific criteria for large scale distribution uses (300,000 square feet) including a minimum site size of 5ha and a drive time to motorway junctions of 10 minutes or less. The Paper concludes none of the sites identified in the evidence base that supported the St Helens Core Strategy (2012) as suitable for large scale distribution and manufacturing uses, satisfy the criteria now suggested as being preferred by the market for large scale uses. Consequently, there is currently zero provision of suitable land for large scale distribution uses within the Borough's identified employment land supply. This shortage of available land to build large distribution facilities has meant that in recent years, when

demand for such premises has been high, occupiers have had to locate elsewhere.

St Helens Employment Land Needs Study (2015)

- 3.81 The St Helens Employment Land Needs Study (ELNS) prepared by BE Group assessed the quantitative employment land need in St Helens between 2012 and 2037. The Study reviewed the local commercial property market and the socio-economic characteristics of St Helens and consulted directly with local businesses through one-on-one interviews and a telephone survey. The data gathering informed the forecasting of the Objectively Assessed Need (OAN) for employment land to 2037, which was assessed using three approaches historic land take-up, jobs forecast and residential labour force projections. The historic land take-up was assessed to be the most appropriate approach for St Helens. Additional to a baseline general employment land needs forecast, an assessment of the additional demand due to major employment projects in the region, including the Parkside SRFI and SuperPort Liverpool, as well as the strong logistics market, was undertaken. The OAN, including the additional demand, was forecast to be 177-214 ha to 2037.
- 3.82 The ELNS was a demand side assessment and did not fully assess the supply of available employment land in St Helens. However, in the course of the Study it was identified that there was a lack of large scale, strategic sites in the LCR appropriate for logistics units. Furthermore, recent take-up of employment land in St Helens appeared to be constrained by lack of local supply, limiting take-up in the 2012-15 time period.
- 3.83 The ELNS notes that major employment facilities, including logistics, require large unconstrained sites which allow for 24-hour operational close to the strategic road network and preferably with strong links to major port facilities. The ELNS found that St Helens' location on the M6 and M62 motorways means that it is ideally positioned to provide a critical role in the North West large-scale logistics and distribution sector. The ELNS indicates whilst traditionally St Helens has been a manufacturing centre, with the largest consumers of land being B2 (general industrial) operations, it is likely that the mix of uses will change during the Plan period, with a strong shift to B8 (storage and distribution) uses. The Study indicated that Parkside would be an ideal location for a multi-modal freight interchange.
- 3.84 The key conclusions of that study can be summarised as follows:
 - warehousing and the logistics market are performing strongly with further demand for growth in the regional market, focusing particularly on the motorway corridors. The logistics sector, particularly large-scale major projects, will be a key driver of growth but with some growth also expected in manufacturing;

- large-scale warehousing market has substantial land requirements across the Liverpool City Region, and St Helens could play a significant role in the provision of such land, especially given its proximity to the motorway network and the employment development around the former Parkside colliery (including a SRFI); and
- notwithstanding the high-level of demand, the development of large logistics space has been constrained over recent years by a shortage of supply in high quality, large sites with excellent access to the motorway network and with planning support. Removal of these land supply constraints has / will generate renewed interest from occupiers for strategic locations in St Helens.

St Helens Employment Land Needs Study Addendum Report (2019)

- 3.85 This Report was prepared by BE Group as an addendum to the main ELNS (2015) and should be read in conjunction with the earlier document. The Addendum Report was commissioned to assess whether the OAN was still valid in light of further information available since 2015. It also provided further information on the likely ultimate job levels on the proposed employment allocations and potential job growth trajectories and where the additional labour to fill these jobs might emerge from.
- 3.86 The OAN was revised upwards, recognising the continued strength of the logistics sector and interest in and around St Helens, particularly for regionally significant, strategic sites. The OAN range was identified as 190-239 ha (from 2012 to 2037).

Parkside Logistics and Rail Freight Interchange Study (2016)

- 3.87 The Parkside Logistics and Rail Freight Interchange Study prepared by AECOM and Cushman & Wakefield investigated delivery options for road and rail-linked logistics development on land at Parkside East and West. It confirmed, having regard to the results of consultation with relevant industry stakeholders, that there is a clear demand for a new SRFI in the North West. Due to its geographical location and specific characteristics the Study found that Parkside is uniquely placed to satisfy this demand. The opportunities for rail access from the site are considered to be second to none in the North West, with access being easily achievable to both the line the WCML and to the East-West ('Chat Moss') line between Liverpool and Manchester. This will allow train movements to / from the north, south, east and west to be catered for at the site.
- 3.88 The Study also identified that the development of a SRFI at Parkside would bring substantial benefits in terms of modal shift of freight movement (from road to rail) and therefore of reducing carbon emissions, when compared with the development of purely road based logistics uses of an equivalent scale.

3.89 In comparison to other current and potential SRFI sites, the Parkside site scores well on investment criteria metrics. Based on available evidence, the Study indicates that the Parkside site could viably deliver a medium (8 trains per day) to large (12 trains per day) facility. The Study recommends that consideration is given to the modification of Core Strategy Policy CAS3.2 to provide a more flexible policy position to support a deliverable and viable SRFI scheme. The Study concludes that to deliver a viable SRFI at Parkside, land on both the west and east side of the M6 must be allocated for the SRFI use and its associated rail infrastructure.

St Helens Council Plan 2018-2020 (2018)

- 3.90 St Helens Council Plan 2018/2020 is the Council's current corporate Plan. The Council Plan identifies high levels of worklessness in the Borough as a key challenge, with lower numbers of people in work, higher numbers of people on out of work benefits and less economic activity than the national average. A key challenge is low attainment and skill levels, as although having shown improvement, school attainment and adult skill levels lag behind the national averages, particularly higher level skills for specialist sectors.
- 3.91 The Council Plan is structured around three key ambitions, one of which is to create a 'Better Place'. Growing the Economy is identified as one of four Borough level strategic objectives, which can help deliver this key ambition.
- 3.92 The Council Plan sets a number of ambitions relevant to employment land and the Local Plan. The Council's ambition is for a strong, well connected and sustainable St Helens to prosper at the centre of a northern economic powerhouse. The Plan seeks to implement an approach to promoting greater economic development activity and growth within the Borough. The adoption of a new Local Plan that establishes the Borough's future planning priorities for the next 15 years and allocates sites for housing, employment, retail and green space development is identified as being key to meeting the Borough's strategic objectives.
- 3.93 The Council Plan identifies ways it will deliver the strategic objectives. Those relevant to employment land and economic growth include:
 - a growth focussed planning and development service with landowners and developers to increase economic development, growth and investment;
 - promote the Borough as a northern hub for logistics, maximising the potential of the M6 growth corridor, the immediate focus of which includes the development of Parkside strategic employment site;
 - successfully deliver the £4.9 million 'Ways to Work' programme to reduce worklessness, in particular youth unemployment,

- engaging over 3,700 people and creating over 800 jobs through a series of apprenticeship and employment support schemes; and
- work collaboratively to maximise the Borough's transportation assets and further establish St Helens reputation as a wellconnected location for national road and rail, whilst delivering a safe and sustainable transport offer. Key projects to be delivered include access to Parkside, national road network improvement to the M6 and A580, the redevelopment of Newton-le-Willows rail station and improved accessibility to the Town Centre.

4. St Helens Borough Local Plan Proposed Approach

- 4.1 SHBLP Policy LPA 04: A Strong and Sustainable Economy, allocates Parkside West (site 8EA) for 79.57ha of employment land for B8 and B2 uses. A further 5.58ha of land is included at Parkside West to facilitate the provision of rail access to Parkside East (site 7EA). 12.1ha of land occupied by a spoil heap is not considered developable and is excluded from the proposed employment site area at Parkside West.
- 4.2 Parkside East (site 7EA) is subject to its own policy: LPA10: Parkside East. Policy LPA10 establishes firstly that the Parkside East site is suitable for use as a SRFI or for other rail served employment uses. It also indicates that (to ensure a suitably flexible approach to the delivery of the site) part of the site (up to 64.55 ha as set out in Policy LPA04) could be developed for non-rail served employment uses, if they bring significant inward investment and / or local employment and training opportunities, and are of a layout and scale that would not prejudice the ability to develop an effectively laid out SRFI or other rail served employment development on at least 60 has of the site, at any time in the future. This approach is justified by the unique combination of locational advantages of this site, including its ready accessibility to both the west coast and east-west ('Chat Moss') rail lines and to the motorway network.
- 4.3 With a gross area of 124.55ha Parkside East is considered sufficiently large enough to accommodate other forms of B2 and B8 employment development on part of the site. However, as stated above, for such uses to be accepted LPA10 states that it must be demonstrated that the layout of the site as a whole would enable the effective development of a nationally significant SRFI or other form(s) of major rail-enabled employment use(s) on at least 60ha of the site. The figure of 60 hectares equates to the threshold above which a SRFI use is identified as being 'nationally significant' under the Planning Act 2008.
- 4.4 As set out in the reasoned justification to Policy LPA10, the strategic location of the Parkside East site next to major north-south and east-west rail routes also makes it attractive to a range of rail-enabled uses such as the manufacture and maintenance of rolling stock, and other industrial uses that require access to rail to serve their markets. Policy LPA10 indicates that the Parkside East site will be considered suitable in principle for these uses provided they bring significant inward investment and / or local employment and training opportunities, the benefits of which would have to outweigh any impact that the proposal would have on the scope to develop an SRFI.
- 4.5 Policy LPA10 sets out robust justification for removing the Parkside East site from the Green Belt. It makes clear that the site strongly supports the Government's aims of building a robust northern economy, promoting the use of the national rail infrastructure, and reducing carbon emissions and congestion by limiting freight movement by road. There are also specific locational requirements for an SRFI, particularly the need for rail and strategic

road connectivity, which prevents the identification of any reasonable alternative in the Borough outside of the Green Belt. In combination with the Parkside West site (8EA), the Parkside East site (7EA) is identified as providing the single largest economic development opportunity in the Borough.

4.6 The Parkside sites are the largest of the proposed site allocations for employment development in the SHBLP. The Council consider these sites to be capable of providing transformational employment opportunities that will make a major contribution to the economic development of St Helens, the LCR and beyond. Part 3 of Policy LPA10 sets out what proposals for development on Parkside East will be required to demonstrate, including specific masterplanning requirements, access requirements (mitigating any adverse impacts on the local road network), minimising impacts on close by residential development and provide training schemes to increase the opportunity for the local population to obtain access to and employment at the site.

St Helens Local Plan Green Belt Review (2018)¹⁰

- 4.7 As set out in the Green Belt Review 2018 and other background papers produced in support of the SHBLP¹¹, St Helens Borough has an identified shortfall of urban land supply to meet housing and economic development needs. For this reason, a review of the Borough's Green Belt has been undertaken as part of the plan-making process for the SHBLP.
- 4.8 The methodology utilised in the Green Belt Review includes a 'sieving' process in which those parcels of Green Belt which are assessed as making a 'high' or 'very high' contribution to selected Green Belt purposes (as set out in the NPPF) are discounted at an early stage (at stage 1B) from consideration at later stages (stages 2 and 3) for release from the Green Belt. There are however exceptions to this approach. Whilst the Green Belt Review acknowledged that if Parkside East parcel GBP_039 (land east of M6 and north of A579 Winwick Lane) was to be developed there would be a high impact on the Green Belt, taking into consideration the scope of the site to accommodate a SRFI and the benefits that could result from this, the Green Belt Review carried forward parcel GBP_039 to Stage 2 notwithstanding its 'high' score at Stage 1B.12

 11 See Developing the Strategy Background Paper (SD026) and Employment Land Need and Supply Background Paper (SD022) for more information.

¹⁰ St. Helens Borough Local Plan 2020 - 2035 Green Belt Review 2018 (SD020).

Given the strong evidence of developer interest and the sub-regional demand for logistics development, Parcels GBP_033 (land to the east of the M6, Junction 23) and GBP_036 (Land south of A580 East Lancashire Road and south east of M6 Junction 23) located on the east side of the M6 were also carried forward to Stage 2 notwithstanding their 'high' score at Stage 1B.

4.9 As evidenced in the Green Belt Review, it is accepted that the development of Parkside East (site 7EA) for a SRFI (or indeed most other employment uses) would have a substantial impact in terms of the purposes of Green Belt land stated in paragraph 134 of the NPPF, particularly in respect of purpose a: "to check the unrestricted sprawl of large built up areas" and purpose c: "to assist in safeguarding the countryside from encroachment". However, as set out in the reasoned justification to Policy LPA10 and in section 8 of this Paper, there are considered to be exceptional circumstances justifying the release of the Parkside East (and West) site from the Green Belt that clearly outweigh the likely harm to the Green Belt.

Cooperation with neighboring authorities and stakeholders

4.10 It is recognised that the development of both the Parkside West and Parkside East sites could impact on key infrastructure within Warrington and potentially in Wigan too, including the local and strategic highway network. Indeed, the application site for the current planning allocation for Parkside Link Road lies within the administrative areas of both St Helens and Warrington. As set out in the Warrington Borough Council Draft Statement of Common Ground, St Helens Council, Warrington Council and Wigan Council have all agreed to work together, in liaison with Highways England, to consider any cross boundary infrastructure or other issues related to the development of the Parkside sites.¹³

Differences between the Core Strategy and proposed SHBLP Policy Position for Parkside

- 4.11 The market for employment land has changed significantly since the adoption of the Core Strategy in 2012 and the current evidence base which supports the SHBLP, identifies a substantially greater need for employment development in the Borough than the evidence base informing the Core Strategy.
- 4.12 The proposed policy approach for Parkside in the SHBLP differs to the existing Core Strategy policies. Policy CAS 3.2 required Parkside West to be developed first before development on Parkside East would be supported. Policy CAS 3.2 also required it to be proven that a SRFI is not deliverable without land on Parkside East, for development on Parkside East to be supported.
- 4.13 The approach in the SHBLP builds on the findings of the AECOM Parkside and Logistics Study (2016) which found that the Parkside site could support a large scale development (12 trains a day) by utilisation of the eastern side of the site, and that the eastern side could be used for the core rail freight

¹³ Please see The Warrington Borough Council Draft Statement of Common Ground 2019 (SD012), (see agreement points 9, 10 and 11 on page 14 and 16) and the St Helens Local Plan 2020 – 2035 Duty to Cooperate Statement (SD009).

terminal or additional intermodal sidings. The Study envisaged a scenario, whereas a first phase, development would commence on the western side accessed by road, with subsequent phases having to have rail access. The Study recommended consideration should be given to the modification of Core Strategy Policy CAS 3.2 to provide a more flexible policy position to support a viable and deliverable SRFI scheme to come forward. The Study shows that a SRFI on the east of the M6 appears to be the most likely form of SRFI to come forward.

- 4.14 The approach in the SHBLP reflects the desire by the Council to provide sufficient flexibility to allow a rail served employment development to come forward on the site, such as a manufacturing scheme should it represent a transformational opportunity for the Borough.
- 4.15 In light of the above factors, unlike existing Core Strategy Policy CAS 3.2, the proposed approach in the SHBLP does not require a sequential approach to the development of the Parkside sites. The approach in the SHBLP is to allocate Parkside West for B2 and B8 employment uses and to allocate Parkside East for a SRFI, but also provide suitable flexibility to allow other rail served employment uses within the site and non-rail served employment uses subject to conformity with Policy LPA10. Non-rail served employment uses will only be permitted if they bring significant inward investment and / or local employment and training opportunities, and are of a layout and scale that would not prejudice the ability to develop an effectively laid out SRFI or other rail served employment development on at least 60 hectares of the site, at any time in the future.
- 4.16 The proposed site area of 124.55ha for Parkside East in the SHBLP is larger than the indicative 70ha outlined as potential additional operational land on Parkside East in the Core Strategy.

5. Strategic Need for a SRFI

- 5.1 As set out in section 3 of this Paper the policy support for a SRFI at Parkside is clear at the European, national, regional, sub-regional and local scale. The Government's NPSNN recognises that there is a 'compelling need' for an expanded network of SRFIs. According to the Government, this reflects several key drivers including the changing needs of the logistics sector, rail freight growth, the environmental advantages of rail freight and the economic and employment benefits that SRFIs can generate. Importantly, the Parkside East site meets the criteria for function, transport links, locational requirement, scale and design of an SRFI as set out in paragraphs 4.83 4.89 of the NPSNN.
- 5.2 As set out in this Paper and in the Market Demand and Supply Assessment in the AECOM Study (2016) which included a review of relevant freight demand forecasts, it is clear there is a long-established and unmet need for a SRFI that would serve the needs of the LCR and wider North West. The evidence on take-up of large warehousing in the Borough and the wider region, the findings of the ELNS (2016 and Addendum Report 2019) and the LCR SHELMA assessment of how much land is required to meet the LCR's strategic B8 needs, demonstrate a significant level of need for additional logistics floorspace in the City Region and for rail linked floorspace to meet the needs of the sector. Parkside is clearly a key strategic location for the LCR's freight and logistics sector and the wider North West, because of its unique location on the doorstep of the WCML, Chat Moss Line, M6 and M62 and its close proximity to the Port of Liverpool.
- 5.3 Originally identified in the 2014 Liverpool City Region Growth Plan as one of a select few multi-phase investment sites, the 2016 updated Growth Strategy continues to highlight Parkside as a key project in supporting the Liverpool City Region Freight and Logistics Hub as well as delivering SuperPort. The LCR Freight and Logistics Strategy (2017) is highly supportive of multi-modal distribution parks (MDPs) and Parkside is named as a potential location for such an MDP. Likewise, the Transport for the North Freight and Logistics Report (2016) specifically names Parkside as a suitable site for a SRFI.
- 5.4 It is clear from the strategic context of Northern Powerhouse, the LCR Growth Plan and Covid-19 recovery and the national and City Region Industrial Strategies, that Parkside has the potential to support inward investment and new growth sectors (such as low carbon and clean growth) while also supporting the Port of Liverpool (which serves a transatlantic market and acts as an Irish Sea hub). The Parkside site also presents a unique opportunity to provide a modern facility to serve the movement of freight from southern ports for certain deep sea markets not served by Liverpool.
- 5.5 The strategic case for a SRFI at Parkside remains strong, demonstrating excellent strategic fit with a number of local, sub-regional, regional and national strategies for both transport and economic growth.

6. Deliverability of Parkside East

6.1 The deliverability of both Parkside West (site 8EA) and Parkside East (site 7EA) was assessed in the St Helens Green Belt Review 2018. This deliverability assessment indicated that there are no fundamental constraints to delivery of the sites in terms of land availability, environmental capacity or infrastructure capacity constraints. The Council consider that the allocation of Parkside East for an SRFI is deliverable and sound in policy terms. However, given the unique infrastructure requirements of a SRFI it is necessary to consider the deliverability of the site in more detail, particularly in relation to rail capacity, rail connection and viability.

Planning History

- 6.2 The following planning history is relevant to the Parkside sites:
 - A hybrid planning application was submitted by Railtrack in August 2001 for a rail freight distribution facility comprising the: construction of the M6 link road; infrastructure and service works; earthworks; flood attenuation; connecting track work into rail terminal; rail terminal; warehousing; office space and car parking. The application was withdrawn due to Railtrack going into railway administration.
 - An application was made in 2005 to facilitate the redevelopment of the site, by carrying out remediation works, undertake site clearance works, excavate, segregate and engineer the soils on the site to form a development platform. This would then facilitate the future construction of a link road. This application included works to generate electricity from mine gas and was approved.
 - In 2006 Astral Developments submitted an application for a SRFI to provide rail served warehouse and distribution building; assembly areas and depots; waste recycling centre, power generating facilities; relocation of substation and rerouting of underground cables. The proposals for Parkside SRFI were for a total of 715,000m² of warehouse and distribution buildings on a 272ha site. Parkside west comprised a 136ha site with 403,000m² warehouse space and Parkside east comprised a 115.5ha with 251,000m² of warehouse floor space. The application was subsequently withdrawn by ProLogis in August 2010. In a statement released on behalf of the developer at the time, the developer indicated that although the withdrawal of the application reflected the viability issues related to developing the site in the economic downturn, the developer did not wish to permanently abandon plans for an SRFI at Parkside.

Site Promotion

- 6.3 As evidenced in the AECOM Study¹⁴ (2016), there continues to be strong developer and operator interest in the site. Parkside East is currently being promoted by iSec for a SRFI and Food Super Hub. Appendix 2 contains a delivery statement for the Parkside East site produced by consultants CBRE on behalf of iSec.
- 6.4 In representations made by CBRE to the Local Plan Submission Draft (2019) on behalf of iSec, strong support was expressed for the proposed allocation of Parkside East. The ability for Parkside to deliver a rail freight interchange, alongside major manufacturing and logistics development, was identified as a 'game changer' and being highly important part to the delivery of the overall growth strategy for St Helens and the LCR.
- On behalf of iSec, CBRE has produced a Delivery Statement in relation to Parkside East, and this is included at Appendix 2. This identifies that:
 - iSec control land at Parkside East;
 - In accordance with the proposed Local Plan policy, iSec is developing a masterplan for Parkside East focussed on the provision a major SRFI incorporating a new food manufacturing and distribution 'Super Hub' for the North West of England;
 - The model of development proposed for Parkside East is similar to a scheme being progressed by iSec at Thames Enterprise Park, serving the London conurbation:
 - iSec is in advanced discussions with a Freight Operating Company (FOC) for the SRFI at Parkside East and is working with specialist SRFI advisors to inform design;
 - The intention of iSec is to progress the proposals at Parkside East through a Development Consent Order, with the expectation that this process will conclude at the end of 2023; and
 - Development of Parkside East could start in 2024 and would likely take up to 10 years to be fully developed.

Capacity of the Rail Network

6.6 As set out in the AECOM Study (2016), Parkside is well situated for potential rail access. To the north and south of the site, the WCML is a mostly four track, fully electrified railway running between Scotland and London via the North West and West Midlands. It is a key freight and passenger artery. The

¹⁴ Parkside Logistics and Rail Freight Interchange Study (August 2016) (EMP005)

Chat Moss line runs east to west linking Liverpool to Manchester, Yorkshire and east coast ports, and is a two track partly electrified route. A series of junctions and chords connect both routes, allowing trains to arrive and leave the area in all four directions.

- 6.7 There are remnants of both the rail connection to the former Parkside Colliery (accessed via a loop on the Liverpool bound Chat Moss line) and the ex-Motorail Terminal (on the northern side of the Chat Moss line by Newton-le-Willows station) close to the site.
- As part of the AECOM Study (2016) the broad operational requirements for varying sizes of rail freight interchanges were set out with demand (number of trains per day) used to match what the specification and functionality of the site would be. The Study concluded that the site could deliver a large facility (12 trains per day).
- 6.9 Network Rail submitted representations to Local Plan Submission Draft (2019) and in relation to Parkside East, noted that feasibility work would be required to understand the availability of space on the rail network to accommodate a SRFI.

Chat Moss East

Chat Moss West

Potential's ite location

West Coast Mainline South

West Coast Mainline South

Figure 3: Local Area Rail Network

(Source, Parkside Logistics and Rail Freight Interchange Study 2016)

- 6.10 Analysis was undertaken by Network Rail in July 2018 in the *Parkside Strategic Rail Freight Interchange Report Capability & Capacity Analysis*¹⁵, as to whether 12 paths into and 12 paths out of Parkside per day could be accommodated to service the proposed Parkside SRFI site. This was based initially on the quantum of services in the December 2018 timetable and then with the inclusion of HS2 Phase 2a services.
- 6.11 The analysis found that there is enough capacity on the existing network to allow for 12 paths a day arriving and 12 paths a day departing Parkside SRFI. However, whilst these paths are available in the geographic scope of the analysis, the report indicated that paths may not be compliant outside of the area considered for in the analysis. In addition, when taking into account HS2 (Phase 2a) the analysis identified there would be 8 paths departing from Parkside SRFI and 4 paths arriving to Parkside SRFI, which does not meet the requirements of 12 paths per day in each direction.
- 6.12 The analysis indicated that the Indicative Train Service Specification (ITSS) for HS2 is still be developed into a concept train plan, so it should be investigated further at a later date to understand if any more paths could be identified. As highlighted in the AECOM Study (2016), the experience of existing SRFIs indicates that it can take several years for a site to achieve a mature level of rail freight traffic. Therefore, there might not be a need for capacity on the rail network of 12 trains per day from the onset at Parkside. It is important to note that the AECOM Study concluded that a terminal that is at least medium size (8 trains a day) would be operationally and financially viable. It should be noted that the established SRFI operate commercially with between 2 and 11 trains per day, the NPSNN referencing the Planning Act 2008 that SRFI sites qualifying as NSIPs must be capable of handling 4 goods trains per day as a minimum (paragraph 4.89).
- 6.13 The Network Rail capacity analysis is considered very high level and very broad and does not provide the level of detail required to be able to fully determine the likely capacity on the rail network to accommodate a SRFI at Parkside. For example, it did not consider a 24-hour operation and the geographical scope was limited. It is considered the 24-hour ability of Parkside to accept or receive trains would provide flexibility in the pathing of train movements to and from the site and would also allow train movements to take place at times when the network is less busy.
- 6.14 The Liverpool City Region Combined Authority working alongside St Helens Council are in the process of commissioning a more detailed capacity study. Initial findings from the study are due to be reported late November 2020 with a final report expected in late December 2020.
- 6.15 Network Rail have been involved in devising the scope of the study and will be consulted on what data is to be used in the study. In summary, the study requirements are:

¹⁵ Parkside Strategic Rail Freight Interchange Report Capability & Capacity Analysis, July 2018 (EMP010)

- Identification of train paths per hour in both directions that could be used to serve Parkside;
- Identification of opportunities and/or interventions on the rail network that could release additional freight paths to serve Parkside, including:
 - Minor retiming of existing services;
 - Consolidation of some off-peak passenger services to improve loadings and set utilization;
 - Rerouting of existing intermodal services from other RFI in the surrounding area to Parkside (within the provisions of the NPSNN paragraph 2.58) where this would yield material benefits to train operators (e.g. use of longer / fewer trains or faster transits) and the wider region (e.g. relieving the Castlefield Corridor through Manchester); and
- Alterations to Network Rail's Engineering Access Strategy.
- 6.16 The study will involve liaison with the rail industry and other key stakeholders to ensure assumptions, dependencies and scenarios are robust and accurate.

Design of the rail connection

- 6.17 Alongside the need to establish capacity on the network to accommodate rail freight services to and from Parkside through the engineering and timetable assessment work, the next stage in taking forward the site is to work with Network Rail to establish a design for the rail infrastructure that will deliver main line connections to the site. This will involve progressing through the relevant stages of Network Rail's Governance for Railway Investment Projects (GRIP) process.
- 6.18 The AECOM Study (2016) considered at the headline level the different options for rail connection to the site. Network Rail have been engaged with St Helens Council and the LCR Combined Authority over taking forward the GRIP process over the past few years. Parkside East site promoters iSec have more recently engaged Network Rail to provide advice regarding the GRIP process, timetabling / rail capacity studies and establishing proposals for the siting and design of the main line connections.

Viability

- 6.19 Paragraph 2.4 of the NPSNN tasks the logistics industry with the development and location of new rail freight facilities, noting that the nature of that commercial development is such that some degree of flexibility is needed when schemes are being developed, in order to allow the development to respond to market requirements as they arise.
- 6.20 Paragraph 4.8 of the NSPNN states that for a SRFI, a judgement of viability will be made within the market framework, and taking account of Government

- interventions such as, for instance, investment in the strategic rail freight network.
- 6.21 The economic viability of a SRFI is determined by a number of key measures. The site must be commercially attractive to developers and investors and economically sustainable in terms of growing earnings and acceptable rates on return to satisfy funders. The site must be strong commercially in relation to competitive sites, not only in the immediate vicinity and the region, but also in relation to other potentially competitive SRFIs, over a wider area.
- 6.22 All SRFIs have high initial investment costs to provide rail and road connections and infrastructure provision and internal site facilities along with the warehouses themselves. This high initial cost must be weighed against the potential for earnings from site operations, and especially the scope to expand the potential and activity of the site according to the expansion and development of the local freight market. The ability to respond and react to the competition from other comparable sites in the region is also an important factor. As identified in the AECOM Study (2016), lack of scope for expansion to the east of the M6 motorway would reduce the competitive position and raise questions about the business strength of Parkside.
- 6.23 The AECOM Study (2016) indicates that in comparison to other current and potential SRFI sites, the Parkside site scores well on investment criteria metrics. No other sites in the catchment area have the potential to receive trains from all directions, with some only able to receive trains from one direction. For example, Garston can only receive trains from the South. Additionally the Parkside site's access to both the M6 and M62 is highly advantageous meaning that Parkside has the potential to be an 'all points' operation, offering as much in terms of intermodal activities as it might in terms of being a destination and general logistical base in its own right.
- 6.24 However, previous proposals at Parkside have been constrained by the upfront capital costs of new infrastructure (both rail and road). The headline economic viability assessment and cash flow forecasting in the AECOM Study (2016) showed that a break-even point would only be reached by 2044 or even later, depending on different development options; this is clearly not a timescale that will encourage the private sector to invest without public sector support. This contrasts with the recent experience of one of the latest SRFI to be developed, on the iPort Doncaster site, where traffic levels have reached over 6 trains a day within 2 years of opening, and without an anchor customer or train operator in place beforehand.
- 6.25 The proposed Parkside Link Road would provide a direct route from the Parkside site to the M6 at Junction 22. The link road has been allocated approximately £24 million from the LCR Strategic Investment Fund (SIF). Furthermore, a St Helens Council Cabinet Report of 23rd October 2019 identifies that the Council will provide £6.17 million to be funded from capital receipts, and that the private sector would provide the balance.

- 6.26 Coupled with the Council's ownership of the majority of the Parkside West site through the Parkside Joint Venture and iSec's land interest in Parkside East, this now provides the private sector with market confidence in the Parkside sites, as there is now less risk in terms of multiple land ownerships.
- 6.27 The juxtaposition of the public sector link road funding, the strong land ownership position and the significant developer and operator interest in the site mean that viability, market attractiveness and investor confidence in the Parkside site has never been stronger.

7. Parkside Planning Applications Latest Position

7.1 There are currently two live planning applications at Parkside. Planning application **P/2018/0048/OUP** was submitted on the Parkside West site (8EA) in January 2018 for:

"Outline application (all matters reserved except for access) for the construction of up to 92,900 m2 of employment floorspace (Use Class B8 with ancillary B1(a)) and associated servicing and infrastructure including car parking; vehicle and pedestrian circulation space; alteration of existing access road including works to existing A49 junction; noise mitigation; earthworks to create development platforms and bunds; landscaping including buffers; works to existing spoil heap; creation of drainage features; substations and ecological works."

- 7.2 The application proposes that the buildings would have a minimum unit size of 13,935m2 and a parameters plan identifies that the buildings would be constructed on three development cells within the site. Access would be taken from the A49. A safeguarded rail parameters plan was also submitted with the application which identifies an area of the site identified for future rail connections associated with a potential future SRFI on Parkside East.
- 7.3 The applicant identifies that the proposed development is the first phase of a comprehensive development of the site to help meet current employment need land needs within the Borough and wider City Region. The application is for Parkside Phase 1 which is the southern area of the former colliery. The applicant states that the application will be followed by an application for B8 and B2 development on the northern part of the former colliery Phase 2.
- 7.4 Council officers presented a report to the Planning Committee meeting held on the 17th December 2019 recommending that planning permission be granted subject to conditions, a planning obligation and the Secretary of State not wishing to intervene. Members agreed the officer recommendation. The Council received notification that the Secretary of State had decided that the application be referred to him for a decision in a letter dated 21st May 2020. A public inquiry in relation to the application is likley to take place in early 2021.
- 7.5 Planning application P/2018/0249/FUL was submitted in March 2018 for:

"the formation of a new link road between A49 (Winwick Road) and M6 Junction 22 including the re-alignment of Parkside Road and other associated works."

- 7.6 The application proposes a single carriageway road referred to as the 'Parkside Link Road', which would link the A49 Winwick Road to the A579 Winwick Lane enabling access to Junction 22 of the M6. The application site lies within the administrative areas of St Helens and Warrington.
- 7.7 The applicant identifies that the Parkside Link Road is proposed in order to facilitate both Parkside West and Parkside East sites. It will provide a comprehensive highways solution for both sites and remove a large

- infrastructure cost. The applicant states that although the proposed development would facilitate the development of the former Parkside Colliery site, the current application for a first phase (P/2018/0048/OUP) is not dependent on the proposed link road.
- 7.8 Council officers presented a report to the Planning Committee meeting held on the 17th December 2019 recommending that planning permission be granted subject conditions and the Secretary of State not wishing to intervene. Members agreed the officer recommendation. The Council received notification that the Secretary of State had decided that the application be referred to him for a decision in a letter dated 21st May 2020. A public inquiry in relation to the application is likely to take place in early 2021.

8. Green Belt Exceptional Circumstances

- 8.1 The approach in the plan-making process for the SHBLP in relation to Parkside has been to assess the level of need for a SRFI at Parkside, the suitability and deliverability of the Parkside East site to meet any identified need, the potential benefits of a SRFI and any harm that might be caused to the Green Belt, before concluding whether exceptional circumstances exist to justify release of Green Belt land.
- 8.2 As part of the preparatory work for the Local Plan, it has been important to acknowledge St Helens' role within the wider LCR by understanding its key strengths and how these can help support the aspirations of the LCR Combined Authority and the LCR Local Economic Partnership (LEP) (as set out in the Local Investment Strategy), particularly in driving forward the logistics sector. Both the LCR Combined Authority and the LEP are seeking to strengthen the LCR economy with the overall aim of 'levelling up' with the rest of the UK economy and maximising the potential for transformation.
- 8.3 It has also been important to take account of the Council's own economic objectives as set out in the Council's Corporate Plan (see section 3 of this Paper), which places further emphasis on the importance of a growth focused Local Plan in order increase economic development, growth and investment. The Local Plan is seen as key to maximising the potential of the Borough as a northern hub for logistics, the potential of the M6 growth corridor as well as helping to deliver the 'Ways to Work' programme to reduce worklessness.
- 8.4 At both the local and sub-regional scale, relevant economic and corporate strategies are clear that the Local Plan is integral in helping meet wider economic objectives as part of a sustainable approach that combines job creation and reduced inequalities. The Council therefore recognise that it is vital that the Local Plan identifies a future supply of land which is suitable, available and deliverable for economic development uses over the Plan period. Ensuring there is a sufficient supply of employment land of the right type and in the right locations for new and existing businesses, and especially for the employment growth sectors, has been a key consideration in the planmaking process. Getting it right clearly matters, for local and inward investment and for business growth.
- 8.5 Of the 11 sites allocated for employment use in the SHBLP including Parkside East and West sites all, but 3 would be released from current designation as Green Belt¹⁶. This is justified because of the limited land supply (particularly for large employment sites with good access to transport routes) which exists in urban areas in St Helens and in nearby districts, and the opportunity provided at Parkside. The exceptional circumstances justifying release of Green Belt for employment land are set out in the Green Belt Review (2018).

¹⁶ See Developing the Strategy Background Paper (SD026) and Employment Land Need and Supply Background Paper (SD022) for more information.

- the Developing the Strategy Background Paper (SD026) and the Employment Land and Needs Supply Background Paper (SD022).
- 8.6 The Council see the proposed employment allocations for logistics development in the Local Plan as being vital to assisting the delivery of the sub-regional economic development objectives of the Government's Northern Powerhouse agenda and also reflecting the LCR LEP's support for logistics in association with Liverpool SuperPort. There is an evidenced need (as set out in the ELNS 2015 and ELNS Addendum Report 2019) to identify and allocate new land for logistics at commercially attractive strategic sites, enabling the sector to growth in a sustainable manner.
- 8.7 The proposed approach to employment land in the SHBLP will also help meet employment land needs across the City Region and West Lancashire as a whole, as identified in the LCR Strategic Housing and Employment Land Assessment (SHELMA) 2017. The Plan will address an identified shortage of large sites, suitable for the needs of the growing logistics sector and the clear evidence of market demand in the Borough. It also takes into account the need for flexibility and choice in site supply and the strategic location of St Helens in relation to the motorway and rail networks.
- 8.8 As set out in section 3 of this Paper, the policy support for a SRFI at Parkside is clear at the European, national, regional, sub-regional and local scale. The Government's NPSNN recognises that there is a 'compelling need' for an expanded network of SRFIs. The development of a SRFI at Parkside would help to meet the national need for a network of SRFIs to support the Government's rail freight and sustainable transport objectives. A SRFI at Parkside would help reduce the number of HGVs on the national road network and would therefore make a direct contribution to reducing greenhouse gas emissions from transport.
- 8.9 Local Plan evidence suggests that the Parkside site would be attractive to the market for major logistics (and manufacturing) development in the absence of a rail freight interchange but that its connectivity to the motorway and rail network make the Parkside site ideal as a multimodal freight interchange. Along with the SuperPort, a SRFI at Parkside is recognised as being a driver for growth, providing significant economic benefits in itself, while also acting as a catalyst for wider growth having the potential to increase demand for employment land in the City Region, particularly for B8 and B2 uses.
- 8.10 The development of a SRFI at Parkside would contribute to economic growth at the regional, sub-regional and local scales. It would help create a significant number of new jobs across a range of skilled, semi-skilled and entry level positions during the construction and operational phases of development and would serve to reduce unemployment in some of the Borough's and wider City Region's most deprived areas.

8.11 As set out in the Green Belt Review 2018 and other supporting background papers¹⁷ to the SHBLP, it is accepted that the development of Parkside East (site 7EA) for a SRFI (or indeed most other employment uses) would have a substantial impact in terms of the purposes of Green Belt land stated in paragraph 134 of the NPPF, particularly in respect of purpose a: "to check the unrestricted sprawl of large built up areas" and purpose c: "to assist in safeguarding the countryside from encroachment." However, it is considered that the harm to the Green Belt would clearly be outweighed by the national and regional need for the proposed SRFI and the significant economic and social benefits of a SRFI and other strategic employment at the local and subregional level. Therefore, it is considered that exceptional circumstances exist to justify the release of Parkside East from the Green Belt in the SHBLP.

¹⁷ See Developing the Strategy Background Paper (SD026) and Employment Land Need and Supply Background Paper (SD022) for more information.

9 Conclusions

- 9.1 As highlighted in this Paper, there is robust evidence for the allocation of Parkside East for a SRFI. The allocation of Parkside East for a SRFI and for rail served employment land will address an identified shortage of large sites, suitable for the needs of the growing logistics sector and the clear evidence of market demand locally and across the wider City Region.
- 9.2 There is clear demand for a new modern SRFI in the North West and due to its geographical location and specific characteristics, Parkside is uniquely placed to satisfy that demand.
- 9.3 The market for employment land has changed significantly since the adoption of the St Helens Local Plan Core Strategy and the current evidence base which supports the SHBLP identifies a substantially greater need for employment development in the Borough (specifically for the logistics sector) than the evidence base informing the Core Strategy.
- 9.4 The strategic case for a SRFI at Parkside remains strong, demonstrating excellent strategic fit with a number of local, sub-regional, regional and national strategies for both transport and economic growth. Indeed, major policy developments since the adoption of the Core Strategy, such as the publication of the NPSNN, various transport and economic strategies at the regional and City Region level have strengthened the case for a SRFI at Parkside. It is clear from the strategic context of Northern Powerhouse, Covid-19 recovery, LCR Growth Plan and the national and City Region Industrial Strategies, that Parkside has the potential to support significant inward investment and new growth sectors such as low carbon and clean growth.
- 9.5 The evidence base informing the SHBLP indicates that the Parkside East site is suitable and deliverable for a SRFI. The viability case, market attractiveness and investor confidence in Parkside East (and West) has never been stronger.
- 9.6 The employment opportunities likely to be created by a SRFI at Parkside would contribute significantly to the regeneration of the Borough and would strengthen the local and wider sub-regional and regional economy. The significant social and economic impact of a SRFI at Parkside, coupled with the strategic fit of a SRFI with national transport objectives means that exceptional circumstances exist to justify the release of Parkside East from the Green Belt in the SHBLP.
- 9.7 The policy approach in the SHBLP reflects the desire by the Council to provide sufficient flexibility to allow a viable and deliverable SRFI to be developed at Parkside, or for a rail served employment development to come forward on the site, such as a manufacturing scheme should it represent a transformational opportunity for the Borough.

9.8 The delivery of new employment development in the Borough through the SHBLP at sites such as Parkside, will be vital in kick-starting the local economy and supporting businesses and organisations in the economic recovery and renewal from the COVID-19 pandemic.

Appendix 1: Site Layout for Live Planning Applications at Parkside West and for Parkside Link Road



<u>Illustrative Masterplan for Parkside Phases 1 and 2 at Parkside West submitted as part of P/2018/0048/OUP</u>

The red line highlights the site area for the Phase 1 development which is the area currently subject to a live planning application (P/2018/0048/OUP).

Proposed Parkside Link Road Alignment as proposed in planning application P/2018/0249/FUL

Proposed Parkside Link Road Location Plan as proposed in planning application P/2018/0249/FUL

Appendix 2: Delivery Statement for Parkside East

PARKSIDE EAST

Land East of Junction 22 of the M6 Motorway, St Helens

Delivery Statement

October 2020

CONTENTS

Part One: Introduction	3
Part Two: The Site and its Context	
Part Three: The Development	
Part Four: The Policy Context	8
Part Five: The Benefits	13
Part Six: The Delivery Plan	16
Part Seven: Summary and Conclusions	19
Appendix 1: Site Plan	20
Appendix 2: Parkside Link Road Plan	21
Appendix 3: Parkside East Masterplan	22
Appendix 4: Intermodality SRFI Technical Note	23

Part One: Introduction

- 1.1 This document has been prepared on behalf of our client, iSec, which is part of the Marcol Group with a 25 year track record and reputation for delivering major strategic logistics based developments.
- Our client has an interest in land known as Parkside East, a strategic development site located adjacent to Junction 22 of the M6 motorway (a site plan, also indicating areas of ownership and the St Helens administrative boundary, is included at **Appendix 1**). The land is allocated in the draft St Helens Local Plan for a Strategic Employment Site (Site 7EA in Policy LPA04) suitable for a Strategic Rail Freight Interchange ("SRFI") and industrial / warehousing and distribution.
- 1.3 Given the scale and nature of the SRFI proposals for Parkside East, the development will be subject to an application for a Development Consent Order ("DCO") under the Planning Act 2008. The proposed programme for the DCO for Parkside East is identified in Part Six of this Statement.
- 1.4 In the evolution of the proposals, iSec and their advisors will continue to work closely with the Council and other stakeholders including the Local Enterprise Partnership, the Liverpool City Region Combined Authority and Network Rail.
- 1.5 The purpose of this document is to demonstrate that the proposed Local Plan site allocation at Parkside East, and the associated proposal by iSec for the site, is deliverable, and that it will provide significant benefits, furthering national and other aims and objectives.
- 1.6 In line with the draft Local Plan, iSec's vision for Parkside East can be described as:

To create a Strategic Rail Freight interchange and unique food-focussed 'SuperHub' employment development of in excess of 3 million square feet.

1.7 The subsequent parts of this document are structured as follows:

Part Two: The Site and its Context;

Part Three: The Development;

Part Four: The Policy Context;

Part Five: The Benefits;

• Part Six: The Delivery Plan;

• Part Seven: Summary and Conclusions;

Appendix 1: Site Plan;

• Appendix 2: Parkside Link Road Plan;

Appendix 3: Parkside East Masterplan; and

Appendix 4: Intermodality SRFI Note.

Part Two: The Site and its Context

THE SITE

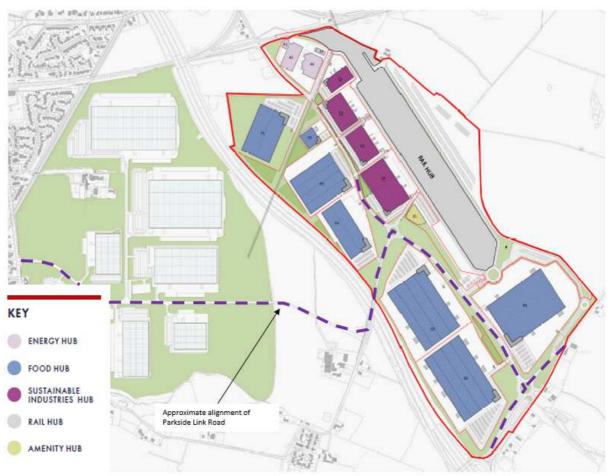
- 2.1 Parkside East is a strategically positioned development site located between Liverpool, Manchester, Wigan and Warrington. It is located on the eastern side of the M6 motorway close to Junction 22. It is circa 1.5 miles to the east of Newton-le-Willows and circa 5.5 miles to the north of Warrington.
- 2.2 Access to the Site is currently from Parkside Road and Winwick Lane / Barrow Lane which provides connections to the M6 Junction 22. The Site is large, regular in shape and generally flat in topography, thereby able to accommodate a wide range of development plots and requirements. There is a Grade II listed building, Huskisson Memorial¹, on the Chat Moss Line to the north of the Site.
- 2.3 The Site comprises mainly of agricultural land and, at present, is wholly located within the Green Belt (until the land's removal from it through the adoption of the draft Local Plan). The northern part of the draft local plan allocation includes an area of woodland (this however lies outside of iSec's current masterplan development area). The Site also includes a small number of farm buildings and other properties. The land is dissected by the A573 (Parkside Road) and a smaller rural lane (Barrow Lane). Initial ecology surveys have been undertaken across the Site which has identified that there may be presence of reptiles, breeding birds and bats. Further species surveys will be undertaken.

THE SURROUNDING CONTEXT

- The Site, near Newton-le-Willows, is ideally located being well positioned close to the M6 and M62 motorways as well as the main A49 road. In addition to its access to the strategic road network, the Chat Moss Line runs along the northern boundary of the Site, providing a linkage to the West Coast Main Line (WCML) and the Liverpool to Manchester railway. These railway lines are core routes on the Strategic Freight Network,² electrified and cleared to W10 and W12 loading gauge respectively, enabling movement of high-cube containers on standard wagons. Its rail connectivity makes it a unique development opportunity to create a new rail freight interchange and logistics / manufacturing 'SuperhHub'. It will provide multi-modal connectivity to the Port of Liverpool, elsewhere in the Liverpool City Region, and far beyond to other national and global locations.
- 2.5 There are a number of major employment schemes involving the release of Green Belt land that are being promoted elsewhere along the motorway corridor, including in St Helens and in neighbouring local authority areas. A number of these schemes have been called-in by the Secretary of State for his determination, along with an application for the Parkside Link Road. It is likely that the majority of these employment schemes, if allowed, will come forward in advance of land at Parkside East.
- The Parkside Link Road application (P/2018/0249/OUP) proposes a road of 3.3 kilometres, connecting the A49 Winwick Road and A579 Winwick Lane, bridging over the M6 motorway. Part of this link road runs through the Parkside East site. The link road lies mainly within the administrative area of St Helens although part of it is also located within Warrington. A plan showing the proposed Parkside Link Road is included at **Appendix 2**.

¹ The Huskisson Memorial was erected in 1831. It was listed in 1966 as a memorial to William Huskisson, MP for Liverpool. Huskisson is reputed to have been the world's first fatality of the Railway Age, being knocked down and fatally injured by the Rocket during the opening celebrations of the Liverpool and Manchester Railway in 1830.

² National Policy Statement on National Networks 2014, Annex C


2.7 Of the major employment schemes being determined by the Secretary of State, the closest one to Parkside East is Phase 1 of Parkside West (planning ref: P/2018/0048/OUP), which is located on the opposite side of the motorway and adjacent to the settlement of Newton-le-Willows. The application for Parkside West (Phase 1) was submitted by Parkside Regeneration LLP (a JV between Langtree Property Partners Limited and St Helens Council). It comprises 48ha of previously developed land for the proposed development of 92,900sqm of B8 floorspace with ancillary B1(a) office space, and is made in outline with all matters reserved except for access. The parameter plans provided with the application show an area of safeguarded land to the north of the site for a possible future rail connection with the Parkside East SRFI.

Part Three: The Development

OVERVIEW

- 3.1 iSec's current masterplan for Parkside East has been informed through engagement with various stakeholders as well as technical and environmental studies and assessments. An overview of masterplan is included at Figure 3.1, with further details also set out below and at Appendix 3.
- 3.2 The proposals at Parkside East will create significant and far-reaching benefits, delivering on the Northern Powerhouse's sustainable growth agenda. It will positively respond to need and demand, provide substantial economic and job creation opportunities and contribute to the low carbon agenda, including through the movement of freight from road to rail. These themes are discussed further in Part Five of this Statement.

Figure 3.1: The Parkside East Illustrative Masterplan

- 3.3 Parkside East will accommodate a strategic rail freight interchange with a major manufacturing and logistics 'SuperHub', and this vision reflects the draft Local Plan allocation and policy for the site. It will meet the Government's strategic objectives for national networks as set out in Chapter 2 of the National Policy Statement for National Networks ("NPSNN").
- 3.4 The proposals are based on a thorough understanding of commercial and deliverability considerations, and are following a similar approach to the development being promoted by iSec at the Thames Enterprise Park ("TEP") next to London Gateway Port, serving the conurbation of London.
- 3.5 Working with their JV partner Greenergy, the TEP scheme will provide for the redevelopment of 167ha of brownfield land in the Thames Estuary to create 480,000sqm of B2/B8 employment comprised of a Food Hub, Amenities Hub, Energy Park and Sustainable Industries Park. The intention is to reproduce the TEP model at Parkside East to serve the North West of England.

The 'SuperHub'

3.6 The 'SuperHub' at Parkside East is proposed to focus on the following elements, supported by a major new rail freight interchange.

SuperHub	Overview	
Food	Temperature-controlled food storage, processing and distribution. The food Superhub will allow operators to greatly enhance their efficiencies including through creating complementary food clusters and enabling the shared use of multi-use facilities and supply chains. iSec has considerable ownership and interest in the cold store sector in the UK.	
Amenity	A focal point for shared, state-of-the-art services and facilities, providing a skills academy, R&D, training, educational, amenity and conference space, with the potential to link to various higher education institutions in the area.	
Energy	Supporting the area's existing energy sector, together with furthering the 'Green Energy agenda' through providing the opportunity for on-site energy generation and the recycling of food wastes.	
Sustainable Industries	Designed to attract smaller industries to support the Food hub, with a particular focus on incubation and highly skilled sustainable industries.	

Strategic Rail Freight Interchange

- 3.7 The designs of the SRFI are being developed and refined with a proposed operator, providing a large inter-modal terminal area which could have capacity for up to 20 trains per day. At this scale, this will be one of the largest facilities of its type in the Country. The current plans include 16 rail sidings, direct road access to the terminal, and associated buildings, lorry park and container storage areas.
- 3.8 iSec has appointed Intermodality³ as its specialist consultant advisors on the SRFI. Intermodality has advised on several recent SRFIs and specialise in their design and planning, finance and procurement, development, marketing and operations. Intermodality has also worked closely with the proposed operator on the design and technical requirements for the SRFI proposed for Parkside East.
- 3.9 The proposals shown for Parkside East on the current masterplan have been developed to meet the criteria for function, transport links, locational requirements, scale and design of an SRFI, as set out in the National Policy Statement for National Networks ("NPSNN").

³ Please see <u>www.intermodality.com</u> for further information on the practice and their track record of other recent SRFI schemes they have worked on and helped to successfully deliver.

Part Four: The Policy Context

LOCAL POLICY

The Adopted St Helen's Core Strategy (2012)

- 4.1 In the Core Strategy, land at Parkside West (circa 85 hectares) is identified as a location for a Strategic Rail Freight Interchange (Policy CAS 3.2). This policy also identifies a further circa 70 hectares at Parkside East (a smaller area than that now identified in the draft Local Plan) as part of the SRFI but notes that land at Parkside East land can only come forward if:
 - Parkside West is developed first; and
 - If Parkside West is insufficient to fully accommodate the SRFI.
- 4.2 Land at Parkside West and East is shown as being within the Green Belt in the Core Strategy; one of the requirements of Policy CAS 3.2 is for the development of Parkside to satisfy the "Very Special Circumstances" Green Belt Policy test.

The St Helen's Local Plan (Submission Draft, January 2019)

- 4.3 The draft Local Plan is advocating a different approach to Parkside East. Draft Policy LPA10 now proposes the removal of land at Parkside East from the Green Belt and allocates it as a Strategic Employment Site (Site 7EA in Policy LPA04) suitable for:
 - The development of a Strategic Rail Freight Interchange ("SRFI"), with the primary purpose of
 facilitating the movement of freight by rail and its on-site storage and transfer between rail and
 other transport modes; and
 - Other forms of B2 and B8 employment use, subject to certain criteria, such as ensuring that such employment uses complement / allow for an SRFI at the site.
- 4.4 Paragraphs 4.36.14 and 4.36.15 of the draft Local Plan summarises the justification for removing Parkside East from the Green Belt (and its allocation under draft Policy LPA10 outlined above). These paragraphs state:

"Site 7EA was (until adoption of this Plan) located in the Green Belt. However, its development in accordance with Policy LPA10 (linked to the unique locational benefits set out above) would strongly support the Government's aims of building a robust northern economy, promoting the use of the national rail infrastructure and reducing carbon emissions and congestion by limiting freight movement by road. The potential to develop an SRFI at this site is reflected in the TfN Northern Freight and Logistics Report Technical Appendices (2016) and would play a key role in delivering the objectives of the Liverpool City Region Growth Plan and Strategic Economic Plan (2016)."

"In combination with Parkside West (Site 8EA), the Parkside East site provides the single largest economic development opportunity in the Borough. The parts of the site that are not directly required to provide rail or road infrastructure or landscaping will also make an important contribution to meeting needs for employment development."

NATIONAL POLICY

National Policy Statement for National Networks (December 2014)

- 4.5 The National Policy Statement for National Networks (NPSNN) 2014 recognises that the railway network forms a vital part of the UK's transport infrastructure that must: "...provide for the transport of freight across the country, and to and from ports, in order to help meet environmental goals and improve quality of life".
- 4.6 The NPSNN identifies that there is a compelling need for an expanded network of SRFIs. This is to: support sustainable distribution (by reducing long-haul road transport of goods on national and local road networks); meet the changing needs of the logistics industry (and addressing growth in movement of freight by rail); and help promote economic development (by responding to the changing needs of the logistics sector.
- 4.7 The NPSNN also stresses that SRFIs should be located near to business markets such as major urban centres or groups of centres, be linked to key supply chain routes, and have good connectivity with both the road and rail networks. It highlights that SRFI capacity needs to be provided at a wide range of locations to provide the flexibility needed to match the changing demands of the market.
- 4.8 In its interpretation of the NPSNN, the Government has noted that multiple SRFIs have been developed in close proximity to each other, creating clusters of activity⁴ and acknowledging an existing cluster between the SRFI at Widnes to the west and at Port Salford to the east.⁵

National Planning Policy Framework (2019)

- 4.9 This confirms that significant weight should be placed on the need to support economic growth and productivity, taking into account both local business needs and wider opportunities for development. Planning policies and decisions should recognise and address the specific locational requirements of different sectors. This includes making provision for clusters or networks of certain industries; and for storage and distribution operations at a variety of scales and in suitably accessible locations.
- 4.10 In relation to transport, it states that planning policies should provide for any large scale transport facilities that need to be located in the area (specifically referencing interchanges for rail freight), and the infrastructure and wider development required to support their operation, expansion and contribution to the wider economy.
- 4.11 The NPPF promotes sustainable development and states that the planning system should support the transition to a low carbon future, helping shape places in ways that contribute to radical reductions in greenhouse gas emissions, supporting renewable and low carbon energy and associated infrastructure.

THE EVIDENCE BASE

4.12 There is a wide body of existing evidence prepared to underpin and inform various local and subnational plans, policies and strategies. These provide strong evidential and related support for the proposals for the development of land at Parkside East.

⁴ West Midlands Interchange SRFI Development Consent Order, Secretary of State decision letter 4th May 2020, para 20.

⁵ West Midlands Interchange SRFI Development Consent Order, Inspectors Report 27th November 2019, para 5.3.64

Liverpool City Region Combined Authority Draft Local Industrial Strategy (March 2020)

4.13 A modern, low carbon infrastructure system is noted as being necessary to deliver the draft Local Industrial Strategy ("LIS"). The LIS specifically emphasises the importance of Parkside to the delivery of one of its key themes, which is to support the clean growth of freight and logistics. In particular, it states that:

LCR's assets, including the port, inland ports, Liverpool John Lennon Airport, the Manchester Ship Canal, proximity to national arterial road networks, and the potential for a major intermodal freight interchange at Parkside in St Helens, mean it will continue to be a hub for freight and logistics.

- 4.14 The LIS highlights the importance of infrastructure to the future success of the economy. The aim for the LCR is to transform its energy, transport, and digital infrastructure to protect the environment, improve public health, and link people to opportunities across the City Region and beyond. To deliver this, a number of priorities are identified, and several of these are of direct and significant relevance to supporting the vision for the development of Parkside East, including:
 - Future readying and integrating LCR's infrastructure;
 - Improving connectivity to the rest of the UK and to international markets;
 - Managing the impact of the growth of freight and logistics; and
 - Powering the City Region effectively and sustainably.
- 4.15 The importance of ensuring that HS2 and Northern Powerhouse Rail links the Liverpool City Region more effectively with other major UK cities is also noted, as is the associated benefits of freeing up rail capacity for freight and logistics, which brings national benefits economically and environmentally.
- 4.16 The logistics (and manufacturing) sectors are also highlighted as being important to the area's future economic growth. Such sectors are acknowledged as having a high incidence of scale-ups and that they can form clusters that are ripe for innovation, supported by dynamic supply chains.

"Building Back Better" – The Liverpool City Region Economic Recovery Plan (2020)

- 4.17 Building Back Better is the LCR's (post-Covid) economic recovery plan, aimed at delivering a competitive, clean and inclusive City Region. This is underpinned by four themes: Business Ecosystem; People Focused Recovery; Place; and Green Recovery.
- 4.18 The themes of Business Ecosystems and Green Recovery are particularly relevant to Parkside East. For example, the Green recovery programme recognises the significant changes required to achieve carbon-neutrality and the objectives of the Local Industrial Strategy (LIS) which sets out the LCR's local *Grand Challenge* of becoming pioneers of the zero-carbon economy.

The Northern Powerhouse

- 4.19 The Northern Powerhouse is a vision for joining up regions of the North, pooling strengths, and tackling major barriers to productivity to 'unleash' the economic potential. The primary objective of the Northern Powerhouse is to achieve an increase in productivity across the North. The need to improve connections within and between regions of the north is at the heart of the Northern Powerhouse vision.
- 4.20 Northern Powerhouse Rail (NPR) is a major rail programme designed to unlock the economic potential of the North. It aims to transform rail services making it easier to move between the region's towns and cities. It will be the region's single biggest transport investment since the Industrial Revolution and include upgraded railway lines, increased capacity, speed, and resilience of the North's rail network. The Government is also committed to Northern Powerhouse Rail with £60m having been provided to

- develop options for the initiative. It is the centrepiece of Transport for the North's Strategic Transport Plan and Investment Programme.
- 4.21 NPR is likely to release rail capacity that can be used to transport freight, enabling increased volumes of freight to be transported in a more efficient way. It is also noted that this will lead to environmental benefits; increased inward investment; new housing growth and land release resulting in an overall positive impact on the economy; and reduced congestion on the existing road and rail infrastructure, especially the East-West routes.

TfN Strategic Transport Plan (2019)

- 4.22 Key conclusions of relevance to Parkside East can be summarised as:
 - Growth of the freight and logistics sector will be crucial to support the transformational economic
 growth ambitions of the North. Understanding and supporting the needs of the North's freight
 and logistics sector and our international gateways will be vital, and supporting businesses to
 move freight and goods efficiently and across modes is one of the three ways included in the Plan
 to support the North's economic assets and clusters.
 - There is a need for improvements in the arrangements for interchanging goods movements
 between road and rail and the development of sites with multi-modal access should be supported.
 Actively supporting modal shift to rail will reduce road congestion, free up capacity, enable
 businesses to make sustainable choices and reduce emissions, although more needs to be done
 to make this modal shift an attractive option; and
 - The needs of the North's logistics sector will continue to be dynamic, with changing demand for
 freight flows. A rail network able to respond quickly to such dynamics is key to ensuring the
 continuation and growth of freight on rail, including capturing commodities currently carried by
 less sustainable modes such as road or air freight.

St Helens Employment Land Needs Study (October 2017, and Addendum January 2019)

- 4.23 The 2019 Addendum to the Employment Land Needs Study was commissioned to update evidence of employment land requirements and market conditions, and to assess the jobs growth potential of the St Helens Local Plan Preferred Options proposed employment allocations. Key conclusions can be summarised as including that:
 - The warehousing and logistics market is performing strongly with further demand for growth in
 the regional market, including within St Helens, focussed particularly on the motorway corridors.
 The logistics sector, particularly large-scale major projects, will be a key driver of growth but with
 some growth also expected in manufacturing.
 - The large-scale warehousing market has substantial land requirements across the Liverpool City Region, and St Helens could play a significant role in the provision of such land, especially given its proximity to the motorway network and the employment development around the former Parkside colliery [including a Strategic Rail Freight Interchange (SRFI)].
 - Notwithstanding the high-level of demand, the development of large logistics space has been
 constrained over recent years by a shortage of supply in high quality, large, flat sites with excellent
 access to the motorway network and with planning support. Removal of these land supply
 constraints has / will generate renewed interest from occupiers for strategic locations in St Helens.

The Parkside Logistics and Rail Freight Interchange Study (August 2016)

- 4.24 This study was produced to underpin the allocation of land at Parkside in the draft Local Plan. It includes a number of key conclusions to support the development of a rail freight interchange and Parkside more generally. These can be summarised as:
 - There is an improving narrative behind the North West and its regional economy, which has
 served to enhance wider market perceptions of the region. One of the key advantages to
 Parkside is that it will help to improve the supply of unconstrained available strategic site supply
 with strategic transport accessibility.
 - The use of rail freight nationally has grown significantly and the ability to deliver a rail freight interchange at Parkside could be a real 'game changer'.
 - In addition to the benefits of the rail freight interchange, the Parkside site's access to both the M6 and M62 is highly advantageous, meaning that Parkside has the potential to be an 'all points' operation to serve this part of the UK.
 - The co-location of employment development on the site and in the immediate area of Parkside
 will enable the scale of supply and demand to help to support the development of intermodal
 train services to be offered from the site to a range of different markets and locations.

Building Our Future - Liverpool City Region Growth Strategy (2016)

- 4.25 This strategy aims to make the Liverpool City Region the Global Port and Logistics Hub for the Northern UK and Ireland through developing an integrated multi-modal transport system for the City Region which will deliver economic growth whilst reducing carbon.
- 4.26 Logistics is identified as one of the region's key growth sectors, with the Growth Strategy promoting the development of a large portfolio of long-term logistics sites and multi-modal facilities to fulfil demand. In order to enable growth, a need for improved road and rail infrastructure, connectivity and capacity to key assets including port, airport and multi-modal sites is identified.
- 4.27 Also, due to the high costs and carbon footprint of road based freight transport compared to sea/rail creates, the opportunity for carbon rebalancing through greater use of port/multimodal sites is emphasised.

TfN Northern Freight and Logistics Report (2016)

4.28 This concludes that 850ha of land should be developed for rail and / or water connected Multi-modal Distribution Parks (MDPs) between 2016 and 2033 to reduce the cost of freight transport, expand market share in the logistics sector and attract private inward investment to the North.

Part Five: The Benefits

OVERVIEW

- 5.1 The evidence base prepared by the local planning authority to inform the draft Local Plan outlines major economic benefits from the development of Parkside East. This is further supported by a number of studies and other evidence base documents prepared for the Local Enterprise Partnership and the Liverpool City Region Combined Authority, which recognise Parkside East as an inter-modal infrastructure project of key importance.
- 5.2 Parkside East is necessary to realising a number of the strategic priorities of the City Region's Local Industrial Strategy and Recovery Plan, such as in relation to the sustained growth of logistics and manufacturing. It will also address recognised issues for the Region, including contributing to addressing regional inequalities further to the the Government's 'levelling up' agenda and moving towards the more efficient movement of freight in a way that minimises environmental impacts and supports low carbon economic growth.
- 5.3 In simple terms, the key benefits of Parkside East can be grouped under the following three headings:
 - Economy and Economic Growth;
 - Addressing Need and Demand; and
 - Contribution to the Low Carbon Agenda.

Economy and Economic Growth

- 5.4 The intended employment focus of Parkside East will be meeting the demands of the rapidly evolving food manufacturing and distribution industry. It will be the first dedicated food hub of its type in the North West of England, and will be supported by on-site waste to energy provision; incubator industries; communal and educational facilities. These sectors are recognised as being particularly important to the growth and success of the City Region's economy.
- Parkside East is one of the most significant employment opportunities in the Northern Powerhouse, at the heart of Liverpool City and Manchester City Regions. It is an opportunity for enhanced trade well beyond the Region. It has the potential to support the delivery of new employment development elsewhere in the area beyond Parkside East itself, and for this to operate in a more sustainable way.
- 5.6 There is potential to link Parkside East to iSec's sister facility at Thames Enterprise Park by rail as well as connectivity with many other parts of the UK, together with more local destinations such as the Port of Liverpool. The latter will help to further build trading links to the Americas, which could become more important to the UK economy post Brexit.
- 5.7 An Economic Impact Assessment is being prepared by iSec to outline the scale and type of employment and other economic benefits to be delivered through the development of Parkside East.
- 5.8 In summary, the delivery of Parkside East will contribute to economic recovery and job creation, help to build export potential, utilise and improve the local skills base, and bolster the area's logistics, manufacturing and other key growth sectors.

Addressing Need and Demand

- 5.9 The opportunity presented by Parkside East is unique and is of importance to ensuring the sustainable and continued economic growth of the Borough and the City Region more widely. The ability to provide a SRFI at Parkside East will be a 'game-changer' in addressing the imperative of moving freight from road to rail and in attracting new investment.
- 5.10 The vision for Parkside East is focussed on the creation of a 'SuperHub', with a specific sector focus on manufacturing, energy industry and R&D at its heart. Parkside East will respond to the need to create

higher value employment opportunities; it will not simply be another logistics park aimed at meeting traditional large-scale B8 requirements.

Strategic Rail Freight Interchange

- 5.11 There is a consistent evidence base that strongly supports the delivery of a Rail Freight Interchange at Parkside East. The importance of such facilities is recognised at the national policy level through the NPSNN and the NPPF, which supports the expansion of the existing networks of SRFI's to deal with new freight growth and also freight migrating from other locations.
- 5.12 Additionally, within the North West context a number of existing rail freight interchanges are legacy facilities constrained by surrounding development. This lends further support to Parkside East and enhancing generally the SRFI network within this part of the country.
- 5.13 The NPSNN does not set out any policy restrictions or geographical restraints on the number of SRFIs across locations to meet demand. The Secretary of State has confirmed that there are limited suitable locations for SRFIs and that it is for the market to determine the feasibility of particular proposals. As noted, the SRFI at Parkside East meets the locational, functional and other criteria and objectives set out in the NPSNN.
- 5.14 The policy support at national level is translated down to the regional and local level through a variety of strategies and evidential documents, which recognise the value and importance of Parkside East to addressing the need for a rail freight facility in this location. In addition, there is a body of evidence prepared by Network Rail, including various Freight Studies, which support the growth of SRFI's in the
- 5.15 Further justification and evidence on the case for the SRFI at Parkside East is included in the note prepared by Intermodality, included at **Appendix 4** of this Delivery Statement.

Strategic Logistics and Manufacturing

- 5.16 The evidence supports the delivery of a significant employment opportunity in this location, with an ability for it to help address the continuing demand for large-scale and strategically located unconstrained development opportunities that are well served by rail and the strategic road network. The M6 motorway corridor is acknowledged as a commercially attractive location for meeting necessary strategic employment growth.
- 5.17 The ability to provide a SRFI as part of the development of Parkside East makes this a unique strategic employment opportunity for St Helens and the wider area. This is a different 'offering' to other large-scale employment allocations within the City Region and the traditional predominantly road-based logistics operations that they tend to attract. iSec intends to prepare further analysis on need and demand to support the already substantial evidence base underpinning the proposed strategic employment allocation at Parkside East.
- 5.18 Due to its location, with good access to the motorway network and two major railway lines, Parkside East will to help deliver new economic growth in a way that also meets the drive towards reducing carbon footprints. It will make a major contribution to the ambition for a global freight, logistics and manufacturing hub serving the north of the UK, well aligned to the Northern Powerhouse transport and growth agenda.

Contribution to the Low Carbon Agenda

5.19 The SRFI to be provided at Parkside East will likely be one of the largest such facilities in the UK, with the potential benefit of relieving rail congestion at key points on the local network, as well as vital removal of significant volumes of freight off road. Sustainable connectivity and the decarbonisation agenda are important drivers and benefits of Parkside East and the City Region more widely, helping to deliver the

- low carbon aspirations and relieving congestion on the road network. Other aspects of the proposed development at Parkside East, such as the proposed Energy and Sustainable Industries SuperHubs, will also contribute towards the objective of creating a low carbon economy.
- 5.20 The development of a SRFI at Parkside will bring substantial benefits in terms of modal shift of freight movement from road to rail, thereby greatly reducing carbon emissions and levels of potential congestion when compared with the development of purely road based logistics uses of an equivalent scale. This would not only be a benefit attributable to the employment uses accommodated at Parkside East itself, but also in supporting a reduction in the long-haul road freight associated with other employment operations in the local and wider area.
- 5.21 In addition to the SRFI, the scale and nature of the SuperHub model proposed for Parkside East will enable the clustering of complimentary activities. This will, in itself, create transport efficiencies, as illustrated in Figure 5.1 below, allowing a move from a traditional less efficient transportation model to one that better meets the needs of a modern sustainable economy.

TOMORROW

Figure 5.1: The SuperHub Model

TODAY

Part Six: The Delivery Plan

OWNERSHIP, OPERATOR AND MODEL

- 6.1 iSec are in control of land at Parkside East. Additionally, iSec are in advanced discussions with a major rail freight business to operate the proposed rail facility. As noted, the design and technical specification of the proposed SRFI has been developed in consultation with the proposed operator and Intermodality, iSec's specialist SRFI consultant advisors.
- iSec, which is part of Marcol Group, has a 25 year track record and reputation for delivering major strategic logistics based developments. The proposals for Parkside East are based on a similar model to that being adopted for sister proposals at Thames Enterprise Park ("TEP"). These proposals are advancing through the planning process, with an outline planning application for the development submitted. Additionally, iSec has undertaken the remediation of land at TEP and there is potential for iSec to also act in a similar proactive capacity at Parkside East through, for example, the provision of certain infrastructure and enabling works.
- 6.3 It is envisaged that there will also be synergies between Parkside East and TEP, including the potential to run freight trains between the two facilities. Given the distance between them, this would allow rail freight movements to function at scale.

TRANSPORT

Rail Capacity

- 6.4 Network Rail submitted comments to the Council in early 2019 in response to consultation on the submission draft version of the Local Plan. In relation to Parkside East, Network Rail identified that feasibility work should be undertaken to understand the availability of space on the rail network to accommodate the SRFI.
- 6.5 To identify how many train paths are potentially available to serve the Parkside East site, a capacity and timetabling study has been commissioned through the Liverpool City Region Combined Authority. The study is focusing on the following three locations for which capacity needs to be determined:
 - Winsford South Junction (for Crewe and southern destinations);
 - Ribble Junction (for Preston and northern destinations); and
 - Ordsall Lane Junction (for Manchester and eastern destinations).
- 6.6 The expectation is that there will be minimal or no traffic needing to operate westwards towards
 Liverpool and hence, this does not need to be assessed. A number of scenarios and different
 assumptions are being considered as part of the study to ensure a robust and long-term assessment.
- 6.7 The study is being completed in consultation with a range of stakeholders including the Liverpool City Region Combined Authority, iSec, St Helens Council, Network Rail, Transport for the North (TfN), Department of Transport, Langtree (who are promoting Parkside West), and train and freight operating companies.
- 6.8 In advance of this work, iSec, through specialist advisor's Intermodality, are already engaging with Network Rail to implement connection to the Liverpool to Manchester line which forms part of the national Strategic Freight Network. Network Rail has assigned an internal project sponsor to support the onward development of the proposals and main line freight access strategy.

Highways

6.9 The Parkside Link Road ("PLR") is being proposed by the Council as a means of promoting the comprehensive development of Parkside West (Phase 2) and Parkside East. Grant funding of circa

- £24m has been secured from the Liverpool City Region Combined Authority (LCR) to contribute to the delivery of the PLR. Funding is also being provided by the Council towards its delivery.
- 6.10 The planning application for the PLR was considered by St Helens Planning Committee on 17th December 2019 (application ref: P/2018/0249/FUL) where it was resolved to approve the scheme subject to conditions and referral to the Secretary of State. The application has been called in for determination by the Secretary of State, together with the application for Parkside West (Phase 1) and certain other applications for large strategic employment schemes involving the release of Green Belt land along the motorway corridor. iSec has issued a statement of support in relation to the call-in Inquiry for the PLR scheme, which is due to be heard early 2021.
- 6.11 The PLR provides a comprehensive highways solution for the delivery of land at both Parkside West and East. If the currently proposed PLR scheme did not take place, suitable alternative access options would need to be considered for the delivery of Parkside East, and this would be done working in collaboration with the Council, the LEP and others including Highways England. As a 'fallback position' iSec is to commission its own independent highways work to define and assess alternative highways options to deliver Parkside East in the unlikely event that the PLR scheme is not forthcoming.

DEVELOPMENT CONSENT ORDER

- 6.12 Given the scale and nature of the development proposed for Parkside East, which includes a SRFI, iSec intend to progress the proposals under the Development Consent Order ("DCO") planning regime.
- 6.13 It is anticipated that time period from issuing information as part of the pre-application process through to issuing of DCO consent will be circa 3 years, with around 18 months at the pre-application stage, and a further 18 months from formal submission of the DCO application through the DCO coming into force. This assumed timeline is similar to a number of recent DCO examples including:
 - Northampton Gateway Rail Freight Interchange (application reference number is TR050006);
 - East Midlands Gateway Rail Freight Interchange (application reference number is TR050002); and
 - Daventry International Rail Freight Interchange (application reference number is TR050001).
- 6.14 The intention is to commence this process at the end of 2020, starting with initial engagement with the Planning Inspectorate to agree matters such as consultation arrangements, timetable programming, main policy and other evidence documents, and the likely main matters for consideration through the DCO process.
- 6.15 An overview of the currently anticipated DCO programme is summarised in the Table 6.1 below.

Table 6.1: Anticipated DCO Programme

Activity (Date)	Main Tasks			
Pre-Application (Late 2020 — mid 2022)	Consultation; ES Scoping; Design development; technical assessments; application; EIA and draft Order preparation.			
Acceptance (mid 2022)	DCO application validation.			
Pre-Examination Activities (Autumn 2022)	Provision of additional information; pre-examination meetings; agreement of main matters for examination.			
DCO Examination (Autumn 2022 — Mid 2023)	Hearing sessions; provision of additional information; pre-examination meetings; agreement of main matters for examination.			

Activity (Date)	Main Tasks
DCO Recommendations and Decision (by end 2023)	DCO Examiner report drafting; provision of any additional information; issue of Examiner report to Secretary of State; SoS decision and Order confirmed.
Start of Site (Early 2024)	Commencement of on-site delivery of Parkside East.

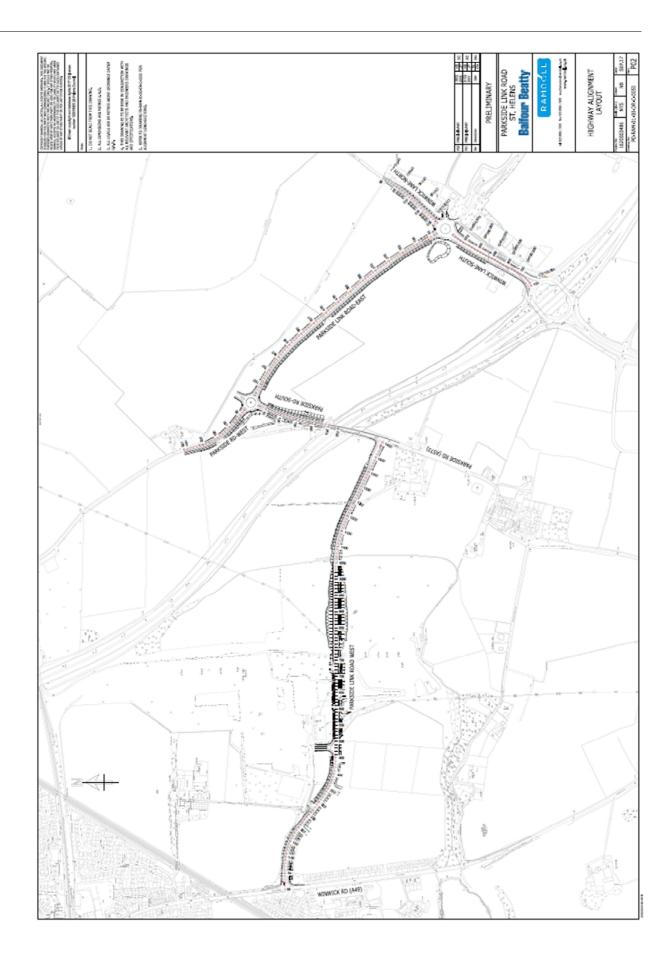
PHASING AND PROGRAMME

- 6.16 The broad anticipated timeline and sequencing for the delivery of Parkside East is as follows:
 - DCO process commences (2020/21);
 - Grant of DCO (end of 2023);
 - Delivery of SRFI (2024 to 2026); and
 - Delivery of the 'Superhub' (2024 to 2029-2034) an estimated 5 to 10 year timeframe from the end of 2023 is identified for the development of the Superhub, within the emerging plan period, with the precise timing of development influenced by prevailing market demand.
- 6.17 The SRFI railway infrastructure is a key component to the proposals and this is currently identified as being one of the earlier phases of the overall development (and as noted, iSec is in advanced discussions with an operator for the SRFI). Phasing and overall programme will continue to be kept under review and refined although it is probable that elements of the 'Superhub' will be in place before the SRFI rail infrastructure.
- 6.18 In this regard, the Secretary of State recognises that the construction of commercial buildings and the construction of a new railway involve different timescales and that it is entirely reasonable that a commercial undertaking should seek to generate income from the warehousing (or manufacturing) facilities before the railway becomes operational.

FREEPORT OPPORTUNITY

- 6.19 iSec is seeking to promote the opportunity for a Freeport at Parkside East, (potentially as an inland port as part of a future wider multi-port Freeport for the Liverpool City Region) and is in discussion with the Combined Authority. A response was made earlier this year to the Government's consultation on Freeports and the intention is to engage further in this process, including through the 'Call for Freeport Sites' which will likely take place at the end of 2020.
- 6.20 Whilst the success of Parkside East is not dependent on its designation as a Freeport, given the locational, transportation and connectivity advantages of the proposals, it does represent a significant opportunity as a future Freeport, including as part of a wider potential Freeport for the Liverpool City Region.

Part Seven: Summary and Conclusions


- 7.1 This Delivery Statement has been prepared on behalf of our client, iSec, which is part of the Marcol Group with a 25 year track record and reputation for delivering major strategic logistics based developments.
- 7.2 iSec are in control of land at Parkside East, which is a strategic development site located adjacent to Junction 22 of the M6 motorway and the Chat Moss railway line. The land is allocated in the draft St Helens Local Plan for a Strategic Employment Site (Site 7EA in Policy LPA04) suitable for a Strategic Rail Freight Interchange ("SRFI") and industrial / warehousing and distribution.
- 7.3 iSec's masterplan for Parkside East delivers the draft local plan policy, with the provision a major SRFI and a new employment 'SuperHub' for the North West of England. The designs of the SRFI are being developed and refined with a proposed operator. The proposals for the SuperHub element of the development mirror those being advanced by iSec at Thames Enterprise Park next to London Gateway Port, which serves the conurbation of London.
- 7.4 The masterplan has been informed by technical and environmental studies and assessments and further work is being progressed, including in relation to railway pathway capacity and economic impact. In developing the proposals, iSec has worked closely with St Helens Council and others such as the Local Enterprise Partnership, the Liverpool City Region Combined Authority and Network Rail.
- 7.5 In summary, work has been taking place over a number of years to evolve the proposals for Parkside East and the location is a well-established opportunity as a location for a SRFI and major employment development. iSec has a strong track record in the delivery of complex major developments such as this and they are in advanced discussions with a well-known rail freight business to operate the proposed rail facilities
- 7.6 The evidence base prepared to inform the draft Local Plan confirms major economic benefits of Parkside East. This is also reflected in studies and strategies prepared for the Local Enterprise Partnership and the Liverpool City Region Combined Authority which recognise Parkside East as an inter-modal infrastructure project of key importance.
- 7.7 Parkside East is important to realising a number of the strategic growth priorities of the City Region's Local Industrial Strategy and Recovery Plan, and the Government's 'levelling up' agenda aimed at addressing regional disparities. Parkside East will deliver the sustained growth of important employment sectors and respond to the need to create higher value employment opportunities. It is not intended to simply be another warehouse park aimed at meeting traditional large-scale B8 requirements; rather the vision is to create a development that will contribute more to economic recovery and job creation, help to build export potential, utilise and improve the local skills base, and bolster the area's manufacturing, low-carbon and other key growth sectors.
- 7.8 Parkside East aligns to the economic and transport objectives for the Northern Powerhouse, and it will address recognised issues for the Region such as moving towards the efficient movement of freight in a way that minimises environmental impacts and supports a shift towards a low carbon economy.
- 7.9 Given the scale and nature of the SRFI development proposed for Parkside East, proposals will be taken forward under the Development Consent Order ("DCO") planning regime. It is anticipated that a DCO could be granted in early 2024, which will then be followed by the phased delivery of the development over a 5-10 year period up to 2034.

Appendix 1: Site Plan

Note: whilst iSec also control land outside of the proposed Local Plan allocation boundary for Parkside East, the masterplan being developed by iSec is contained within the proposed allocation boundary.

Appendix 2: Parkside Link Road Plan

Appendix 3: Parkside East Masterplan

Appendix 4: Intermodality SRFI Technical Note

The role and importance of Strategic Rail Freight Interchanges

1.1 The development of rail freight interchanges, 1955 - 2000

- 1.1.1 Rail freight interchanges (RFI) typically provide facilities for the storage and/or handling of goods between trains and other modes of transport, principally road and sea. Given that the vast majority of movements of goods by rail will involve road haulage at one of both ends of the rail transit, RFI are therefore integral to achieving mode shift of goods to rail for part of the journey, by providing the necessary interfaces with road haulage. RFI will either provide a straight transfer of goods between rail and road (eg lifting of containers between trains and trucks), or will enable goods to be moved by rail to adjacent storage and processing facilities, from where the goods will then be held prior to onward sortation and delivery by road.
- Between the 1950's and 1990's, the number of RFI declined dramatically, reflecting the downward trend in 1.1.2 traffic volumes and the changing pattern of rail-based logistics. Previously, a multitude of RFI of various sizes existed to serve industry and wider general merchandise traffic, with most passenger stations having some form of goods facilities, together generating a profusion of individual wagon loads of freight. As British Rail moved away from this inefficient and unprofitable wagon-load business and focussed instead on train-load business, most of the smaller RFI were closed. The redundant RFI sites were gradually sold off for alternative uses, or became increasingly surrounded by other development which then constrained the scale, nature and working hours of such sites.
- 1.1.3 In recent years, the unprecedented growth in containerised (intermodal) traffic moved by rail has been facilitated by expansion of interchange facilities. Around the coast, the major ports of Felixstowe, Southampton and London Gateway have invested in new quayside RFI facilities. In 2017, Felixstowe moved a record-breaking 1 million TEU1 by rail, and is now working with Network Rail to expand rail traffic throughput further, from 33 trains per day at present to 47 trains per day in and out of the port. In parallel, investment has also been made in a network of existing inland RFI (mainly BR-era inner-city rail terminals), as well as a small number of new, larger facilities (Strategic RFI or SRFI).
- 1.1.4 The National Policy Statement on National Networks (NPSNN) states that there is a compelling need to expand the SRFI network, but rationalisation of RFI during the last 50 years has meant that many areas either no longer have any interchange facilities, or have "legacy" sites which often suffer from poor location, accessibility, capacity or facilities. Independent research by Sheffield Hallam University in 1999 (Rail Freight Growth and the Land Use Planning System) noted the absence of sites (our highlighting):

Finding sites for the larger terminals and freight villages within existing urban areas is very difficult. Where there are existing rail freight facilities, as at Willesden in north London, there is usually insufficient space, and disused facilities will probably have been sold on and developed.

What is required is large sites on the edge of metropolitan areas at points where the rail network intersects with the trunk road network: these factors combine to mean that suitable sites can often only be found outside existing urban areas, and such locations may well be subject to green belt policies and/or other restrictive planning policies.

¹ Twenty-Foot Equivalent Unit, a measure of container traffic throughput

There will only be a limited number of rail accessible sites in a local authority area that have potential for rail freight. The priority for such sites must be to retain/secure rail freight development on them, and this should override other demands such as the need to develop housing on brownfield sites, or to retain low grade farmland for agriculture as part of an urban containment strategy.

1.1.5 Almost 20 years later, the NPSNN shares this view:

> Given the locational requirements and the need for effective connections for both rail and road, the number of locations suitable for SRFIs will be limited, which will restrict the scope for developers to identify viable alternative sites.2

1.2 **Growth of Strategic Rail Freight Interchanges**

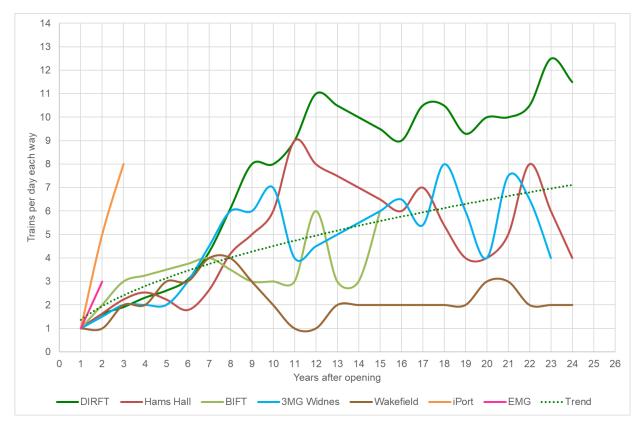
- 1.2.1 During the 1990's, the prospect of the Channel Tunnel fixed rail link, combined with renewed interest in rail through the break-up of the former British Rail freight business, saw the emergence of a new generation of interchanges. Sites such as DIRFT (Rugby) and Hams Hall (Coleshill) in the Midlands spearheaded a small number of private-sector and public/private developments, primarily intended to create better access to and from mainland Europe via the Channel Tunnel.
- 1.2.2 Whilst the evolution of rail freight traffic through these sites has tended more towards deepsea and domestic intermodal traffic (notably, over much shorter distances than Channel Tunnel services), the success in securing occupiers, employment and rail freight traffic led Government to enhance planning policy in subsequent years to encourage expansion of the network.
- 1.2.3 "Strategic" RFI are distinguished from other RFI by virtue of:
 - The of scale freight activity on site, compared to standalone RFI without associated warehouses;
 - Location, typically at the intersection of major railway and highway networks on the edges or between main population centres, as opposed to inner-city RFI sites; and
 - Number 8 SRFI are operational, with at least 8 further sites currently being commissioned, under construction or proposed, contrasting with several hundred individual RFI sites.
- For over twenty years from Planning Policy Guidance Note 13 in 1992 to the NPSNN in 2014, the 1.2.4 Government has consistently sought to encourage the greater use of rail for freight transport, in part through the private-sector provision of RFI facilities. Policy notes the need for a relatively small number (compared to road-served distribution parks) of larger "Strategic" RFI, to create a significant amount of distribution floorspace and goods traffic around the associated interchange facilities.
- 1.2.5 Such developments increase the level of rail-served floorspace available to companies wishing to occupy such facilities in the local area. They also help consolidate local freight traffic activity into that needed to make trainload rail freight services, bringing together traffic from on-site occupiers as well as from other local companies in the hinterland, who may not wish to (re)locate to site, but who would still wish to have access to the rail network.

² Para 2.56

- 1.2.6 SRFI provide the critical opportunity for occupiers and other end users to have access to a choice of rail and road transport on a day-to-day basis, which would not be possible at exclusively road-served distribution parks. SRFI provide "incubators" for the development of new rail freight services, attracting occupiers to site who may not initially make use of rail, but who over time would become familiar with the adjacent rail freight facilities and services and in time make their own conversion of some traffic to rail.
- 1.2.7 This point was foreseen in the early evolution of Government policy on SRFI development, and latterly confirmed by the experience of occupiers at SRFI. In the case of Tesco and Eddie Stobart, each having taken a significant level of floorspace at DIRFT in the mid-1990's, the companies gradually developed their respective use of rail from individual containers moved by rail from the ports, through to operating multiple trainloads per day from 2006 onwards (up to 7 per day at present).
- 1.2.8 The Freight Transport Association (FTA, now Logistics UK) has highlighted the work of retailers in achieving mode shift to rail, with the majority of this involving use of SRFI at one or both ends of the rail transits. The Table below summarises mode shift by retailer. Research by the Campaign for Better Transport indicates that use of rail via DIRFT alone has led to 64 million lorry miles saved per annum.³

Table 1 Mode shift to rail by retailers (source FTA 2012)

Retailer	HGV journeys saved per year	Road miles saved	CO₂ saved	Comment
Tesco	110,000	41 million	39,000 tonnes	Rail freight is part of our ongoing commitment to be a zero carbon business by 2050. It is the most sustainable way of transporting goods across the country
Asda	10,300	5.54 million	5,300 tonnes	Any journey over 350 miles, if you have depots close to the railhead at either end, can stack up financially for rail
B&Q	10,000	3 million	4,237	So far the service levels on rail are good. We haven't been let down yet
Sainsbury's	4,200	1.6 million	1,500 tonnes	Rail clearly delivers significant environmental benefits and it has the potential to offer cost savings. We aim to exploit it as much as possible
Marks & Spencer	1,200	655,000	800 tonnes	Rail distribution saves time, costs less and, crucially, as we move towards our ambitious Plan A commitments, cuts carbon emissions from our transport operations
Morrisons	1,560	72,000	58 tonnes	Environmental benefits and cost savings go hand in hand. If we had the right opportunity, we would move more product off road and onto rail without hesitation
Co-operative	520	335,000	318 tonnes	The reliability of service has been excellent
Waitrose	260	156,000	0.15% of total transport CO ₂	I can see the environmental benefits of rail and intuitively I want to do more. But what's offered by the rail freight industry needs to fit our requirements better


https://bettertransport.org.uk/sites/default/files/research-files/integrated-transport-a-new-generation.pdf

Intermodality

1.3 **Growth in traffic from recent SRFI developments**

- 1.3.1 The Figure below shows the evolution of rail freight traffic from the existing operational SRFI, noting the speed with which one of the latest generation of SRFI (iPort Doncaster) has achieved 4 trains per day each way (the target for SRFI as defined in the Planning Act 2008), compared to first-generation SRFI.
- 1.3.2 In addition, consents have been granted for two more SRFI in and around the Midlands, at Northampton Gateway (6 million sq ft) and at West Midlands Interchange (Cannock, 8 million sq ft). Unlike the Midlands which now has 6 sites in operation or with consent, and at least 2 further sites in planning, no further SRFI proposals have come forward in the North West region beyond the existing sites at 3MG and Port Salford.

Figure 1 Evolution of rail freight traffic through operational SRFI in England

SRFI provision in the North West

2.1 **Overview**

- The North West region is home to 7.3 million people, some 11% of the population of the UK,4 but 2.1.1 generates 228 million tonnes of freight on road haulage, around 16% of the UK total, 5 the difference in national shares in part explained by the presence of Liverpool Superport and associated traffic.
- 2.1.2 As with all other regions of the UK, the majority of road freight tonnage starts and finishes within the region itself (114 million tonnes), but otherwise traffic is concentrated on the nearest adjoining regions in the Midlands and Yorkshire & Humberside.
- 2.1.3 For warehousing floorspace, the region accounts for 70 million sq ft or 16% of total floorspace in England.6 In terms of SRFI capacity, it is worth noting that the East and West Midlands regions each generate similar levels of road haulage tonnage to the North West, and account for 21% and 16% of warehousing floorspace respectively, but each have at least 4 SRFI either operational, consented or proposed, compared to the 1 SRFI (and 1 under construction) in the North West at present.
- The Figure below shows the availability of intermodal RFI and SRFI (*) in terms of sites already in 2.1.4 operation (green), under construction (orange) or proposed (white). Most of the operational RFI handle refuse-derived fuel at Runcorn, Knowsley, Brindle Heath, Dean Lane, Bredbury and Northenden (and proposed at Protos). Those inland RFI handling general merchandise traffic (Garston and Trafford Park) are now surrounded by other development uses with little or no room to expand.

Figure 2 SRFI & RFI in the North West (colour indicates operational status)

⁴ ONS mid-year estimate 2019

⁵ DfT Road Freight Statistics 2018 – figure shown for GB-registered vehicles only

⁶ Leicester & Leicestershire Strategic Distribution Study 2014

2.1.5 In the medium to long term (beyond 5-10 years), existing inner-urban sites may come under increasing pressure from network capacity constraints (the Castlefield rail corridor through Manchester being the subject of considerable scrutiny at present) or redevelopment for higher-value uses such as residential. The risk is that the investment, employment and rail modal shift opportunities associated with SRFI then gravitate to surrounding areas with greater levels of rail-served floorspace and interchange facilities.

2.2 The role of Parkside

- 2.2.1 The Parkside area has been under consideration for SRFI facilities since first being identified by the national rail network infrastructure manager (Railtrack at the time) in the mid-1990's. The failure of the subsequent Parkside and Trafford Interchange SRFI schemes to make progress has reduced the North West region to having only 2 SRFI sites available at present. Parkside is equidistant from Liverpool and Manchester, at the intersection of east-west and north-south strategic transport corridors. The site therefore offers an unique opportunity to enhance existing SRFI provision and associated rail-served floorspace, complementing their respective city-centric catchment areas with a central location and additional floorspace at the heart of the region.
- 2.2.2 To help determine an appropriate scale of rail freight interchange facilities on site, iSec has secured the support of an anchor rail freight operating company (FOC) which already moves containers by rail to and from the region. Based on the FOC's requirements to create an open-access interchange around which to consolidate operations in the region, the masterplan envisages an interchange covering over 20 hectares, with two main phases each having 8 x 800m sidings configured for gantry crane operation. This provides for container storage capacity of nearly 9,000 TEU, the equivalent of 100 trainloads. Access will be provided for electric and diesel-powered trains up to the rail freight interchange, from where on-site pilot locomotives would move trains to and from the handling area. Traversers at the southern end of the rail freight interchange (as used at Felixstowe) enable locomotives to switch between sidings as required.
- 2.2.3 The interchange would be linked to 800m length reception sidings constructed parallel with the Liverpool – Manchester main line. These reception sidings, like on the on-site rail freight facilities, have been designed for open-access operation, offering scope for other rail freight services to use these for recessing, allowing other trains to pass if required, creating wider network benefits for rail services and users. The rail access arrangements are also designed to interface with the separate proposals for the former Parkside Colliery site, allowing maximum rail accessibility into both sites.
- 2.2.4 In this way, the proposals provide for long-term expansion potential in line with the NPSNN, ⁷ starting with the existing available network capacity to provide for the immediate requirements of the site as a SRFI (ie at least 4 trains per day through the site). From here, the site can then expand in line with the wider capabilities of the SFN, to cater for additional demand for rail freight services. This may include consolidation of traffic displaced from other legacy RFI by capacity constraints or development pressures, again in line with the NPSNN.8

⁷ Paragraph 4.88

⁸ Paragraph 2.58

Conclusions 3

- 3.1.1 The Government wishes to increase the level of freight traffic shifted from road to rail in support of wider economic and environmental policy objectives, rail having the ability to reduce emissions by over threequarters relative to road transport. 9 To achieve this, the Government has stated in the NPSNN that there is a compelling need to expand the network of larger Strategic Rail Freight Interchanges, which are intended to accommodate various combinations of rail-served warehousing, container handling facilities, manufacturing and processing activities. The Government has concluded that the alternative options, including reliance on road haulage or the existing network of Rail Freight Interchanges (Strategic or otherwise) cannot address this need.
- The Government considers that SRFI capacity needs to be provided at a wide range of locations, to 3.1.2 provide the flexibility needed to match the changing demands of the market, possibly with traffic moving from existing RFI to new larger facilities and/or through development of co-located "clusters" of SRFI. This policy has been borne out by the experience of the 8 operational SRFI in the UK, each of which has generated new rail freight services carrying traffic for users on site and in the immediate catchment area.
- 3.1.3 The Government has stated in the NPSNN that the logistics industry should determine where SRFI should be developed, with any judgement of viability then being made within the market framework, and taking account of Government interventions such as, for instance, investment in the Strategic Rail Freight Network. Due to the locational requirements and the need for effective connections for both rail and road, the Government has acknowledged that the number of locations suitable for SRFIs will be limited, restricting the scope for developers to identify viable alternative sites. The re-use of previously developed land may not be possible, the Government noting that brownfield land alone may not be economically or commercially feasible. Due to these requirements, it may be that countryside and/or Green Belt locations are required for SRFIs.
- 3.1.4 The nationally-significant nature of SRFI projects qualifying under the NPSNN and Planning Act 2008 is reflected in consent being granted for all four SRFI projects progressed through the Development Consent Orders (DCO) route, namely DIRFT phase 3, East Midlands Gateway, Northampton Gateway and West Midlands Interchange. All these sites have been developed on greenfield sites, the last on a Green Belt site, in each case being approved by the Secretary of State in response to the provisions of the NPS.
- 3.1.5 The North West currently only has access to a single SRFI at 3MG with a second under construction at Port Salford, the two sites providing a relatively small level of rail-served floorspace relative to that available in neighbouring regions. Without additional SRFI provision in the region, there is a risk of the rail-related investment and employment opportunities being lost to other parts of the UK where more sites are available.
- 3.1.6 The Parkside East site can make a significant contribution to local and national strategic priorities, providing a site at the centre of the North West region alongside the motorway and Strategic Freight Network at W10/W12 gauge, with a track layout on site capable of handling trains up to 775m. The site can therefore offer the same opportunities to generate new rail freight traffic as demonstrated by all the other operational SRFI.

Intermodality

⁹ https://www.raildeliverygroup.com/files/Publications/2018-06 rail freight working for britain.pdf (page 12)